首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of surfactant mixtures on hydrophilic solid surfaces is of considerable theoretical and practical importance. Cooperative adsorption of nonionic surfactant mixtures of nonyl phenol ethoxylated decyl ether (NP-10) and n-dodecyl-beta-d-maltoside (DM) on silica and alumina was investigated in this study with a view to elucidate the nanostructures of their aggregates. In the mixed system, DM is identified to be the "active" component and NP-10 is the "passive" one for the process of adsorption on alumina, while their roles are reversed for silica. The difference in the adsorptive interactions of the surfactants with the above minerals is attributed to the differences in the molecular structures of the surfactants. To better understand the interaction between surfactants at solid/solution interface from a molecular structure point of view, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing parameter: the structures are spherical or cylindrical on silica and those on alumina undergo a spherical-to-cylindrical-to-bilayer transition with the addition of the active component. This work offers a new way for developing of structure-performance relationships.  相似文献   

2.
Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption.  相似文献   

3.
The use of mixed surfactants for modification of solid surfaces is important for many applications, since beneficial synergism often occurs depending on the surfactant type and mixing conditions. Systematical information on the properties of surfactant mixtures at the solid/liquid interface can be helpful for optimizing the interactions between the surfactants and then their corresponding performance. In this work, a nonionic/anionic surfactant combination, n-dodecyl beta-d-maltoside (DM) and sodium dodecyl sulfonate (SDS), was selected for the study of adsorption on an oxide solid, alumina. Interestingly, the mixture of the two surfactants with opposite pH-dependence of adsorption on alumina exhibits some unique synergistic or antagonistic features that were found to be tunable in the region of pH 4-10. In addition, the DM/SDS molar ratio in the adsorbed layer was found to decrease with concentration in the saturated region at all the pH and mixing ratios tested. The decrease is attributed to the monomer concentration changes in solution due to the difference in surface activities of the two surfactants. The tunable features of this mixture at the solid/liquid interface provide a way to optimize the properties by changing the mixing conditions. This can be valuable in many applications, such as enhanced oil recovery, flotation, and solubilization.  相似文献   

4.
An alumina surface was modified by adsorption of an anionic surfactant, sodium dodecyl sulfate (SDS). Typical S‐shaped isotherm of surfactant on alumina was observed. The adsorption of Disperse Red‐11, Disperse Blue‐26 and Disperse Red‐156 on alumina and surfactant treated alumina has been investigated. The enhancement in adsorption of these disperse dyes on surfactant treated alumina is observed, which may be attributed to their solubilization in surfactant aggregates formed at the solid/liquid interface. The effect of pH on adsorption has been studied. The adsorption is greatly influenced by pH of the medium. The applicability of the Langmuir model and the Dual‐Mode sorption model (DSM) were tested for equilibrium data.  相似文献   

5.
研究阴、阳离子表面活性剂混合体系(十二烷基氯代吡啶,辛基磺酸钠,辛基三乙基溴化铵/十二烷基苯磺酸钠)在硅胶,纯水和硅胶,矿化水界面上的吸附作用,探讨阴(阳)离子表面活性剂的存在对阳(阴)离子表面活性剂吸附作用的影响.结果表明,阴离子表面活性剂的存在基本不影响阳离子表面活性剂在带负电固体表面的吸附;而阳离子表面活性剂的存在却使本来吸附量就不大的阴离子表面活性剂在带负电的固体表面上不再吸附.在矿化水中阳离子表面活性剂的吸附量比在纯水中明显降低.从硅胶表面吸附机制解释了所得结果.  相似文献   

6.
Sugar-based surfactants can be synthesized from renewable materials and are environmentally benign. They have some unique solution and interfacial properties and have potential applications in a wide variety of processes, and there is a need for corresponding information on their behavior at various interfaces. In this study, co-adsorption of nonionic sugar-based n-dodecyl-beta-D-maltoside (DM) and anionic sodium dodecyl sulfate (SDS) on alumina was studied as a function of mixing ratios and solution pHs. It is found that at solid-liquid interface, depending on the solid type and the solution conditions, there are various interactions that dictate synergy or antagonism. At pH 6 where alumina is positively charged, marked synergistic effects between DM and SDS were observed, while at pH 11 where alumina is negatively charged, SDS shows antagonistic adsorption effects with DM. The ratios of surfactant components on solids change as a function of surfactant structure and concentrations as well, indicating various interactions at solid/liquid interface under different conditions that can be utilized for many industrial processes.  相似文献   

7.
Due to the increasing practical use of mixtures of flavonoids with nonionic surfactants the presented studies were based on the measurements of surface tension and conductivity of aqueous solution of the quercetin (Q) and rutin (Ru) in the mixtures with Triton X-114 (TX114) and Tween 80 (T80) as well as the contact angle of model liquids on the PTFE surface covered by the quercetin and rutin layers. Based on the obtained results components and parameters of the quercetin and rutin surface tension were determined and the mutual influence of Q and Ru in the mixtures with TX114 and T80 on their adsorption and volumetric properties were considered. It was found, among others, that based on the surface tension isotherms of the aqueous solution of the single flavonoid and nonionic surfactant, the surface tension isotherms of the aqueous solution of their mixture, the composition of the mixed monolayer at the water-air interface as well as the CMC of flavonoid + nonionic surfactant mixture can be predicted. The standard Gibbs energy, enthalpy and entropy of the adsorption and aggregation of the studied mixtures were also found, showing the mechanism of the adsorption and aggregation processes of the flavonoid + nonionic surfactant mixture.  相似文献   

8.
Surface properties of systems that are mixtures of ionic surfactants and sugar derivatives-anionic surfactant sodium dodecyl sulfate and n-dodecyl-beta-D-maltoside (SDS/DM) and cationic surfactant dodecyltrimethylammonium bromide and n-dodecyl-beta-D-glucoside (DTABr/DG)-were investigated. The experimental results obtained from measurements of surface tension of mixtures with various ratio of ionic to nonionic components were analyzed by two independent theories. First is Motomura theory, derived from the Gibbs-Duhem equation, allowing for indirect evaluation of the composition of mixed monolayers and the Gibbs energies of adsorption, corresponding to mutual interaction between surfactants in mixed adsorbed film. As second theory we used our newly developed theoretical model of adsorption of ionic-nonionic surfactant mixtures. Using this approach, we were able to describe the experimental surface tension isotherms for mixtures of surface-active sugar derivatives and ionic surfactants. We obtained a good agreement with experimental data using the same set of model parameters for a whole range of studied compositions of a given surfactant mixture. The values of surface excess calculated from both theories agreed with each other with a reasonable accuracy. However, the newly developed model of adsorption of ionic-nonionic surfactant mixtures has the advantage of straightforward determination of surface layer composition. By the solution of equations of adsorption, one can obtain directly the values of surface excess of all components (surfactant ions, counterions, and nonionic surfactants molecules), which are present in the investigated system.  相似文献   

9.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   

10.
The adsorption of the monomeric/gemini surfactant mixtures at the silica/aqueous solution interface has been characterized on the basis of quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) data. The gemini surfactant employed in this study was cationic 1,2-bis(dodecyldimethylammonio)ethane dibromide (12-2-12). This surfactant was mixed with monomeric surfactants (dodecyltrimethylammonium bromide (DTAB), hexadecyltrimethylammonium bromide (HTAB), and octaoxyethylenedodecyl ether (C(12)EO(8))) in the presence of an added electrolyte (NaBr). The key finding in our current study is that the addition of the gemini surfactant (12-2-12) makes significant impact on the adsorption properties even when the mole fraction of 12-2-12 is quite low in the surfactant mixtures. This is suggested by the experimental results that (i) the QCM-D adsorption isotherms measured for the monomeric/gemini surfactant mixtures shift to the region of lower surfactant concentrations compared with the monomeric single systems; (ii) the adsorbed layer morphology largely depends on the mole fraction of 12-2-12 in the surfactant mixtures, and the increased 12-2-12 mole fraction results in the less curved surface aggregates; and (iii) the addition of 12-2-12 yields a relatively rigid adsorbed layer when compared with the layer formed by the monomeric single systems. These adsorption properties result from the fact that the more favorable interaction of 12-2-12 with the silica surface sites drives the overall surfactant adsorption in these mixtures, which is particularly obvious in the region of low surfactant concentrations and at the 12-2-12 low mole fractions. We believe that this knowledge should be important when considering the formulation of gemini surfactants into various chemical products.  相似文献   

11.
The adsorption isotherms onto a hydrophilic silica of mixtures of sodium dodecylsulfate (SDS) and of all the oligomers of a polydisperse nonylethylene glycol n-dodecyl ether (C(12)E(9)) surfactant were determined using a high-performance liquid chromatography (HPLC) technique. Incorporation of the anionic surfactant to the negatively charged silica surface is favored by the adsorption of the nonionic surfactant. Comparison between the adsorption isotherms of mixtures of SDS with a monodisperse C(12)E(9) and a polydisperse C(12)E(9) shows that the adsorption of SDS at the silica/water interface is stronger with the latter material than with the former in a large surface coverage domain. The composition of the surface aggregates and the variation of the oligomer distribution in these aggregates were determined. The previously described phenomena called self-desorption which was observed for the global C(12)E(9) and SDS surfactant mixtures was confirmed: increasing the total concentration at a fixed surfactant ratio induces at high concentration a desorption of the anionic surfactant and all of the less polar oligomers from the solid/water interface. An interpretation scheme is proposed which assumes that the interaction of SDS is larger with the less polar oligomers than with the polar ones. The self-desorption effect could then be considered as the consequence of the polydispersity of the nonionic surfactant and to the net repulsion interaction between SDS and the silica surface as the mole fraction of SDS in the surfactant mixture increases.  相似文献   

12.
A coarse-grained molecular dynamics simulation has been carried out to study the adsorption and self-organization for a model surfactant/supercritical CO2 system confined in the slit-shape nanopores with amorphous silica-like surfaces. The solid surfaces were designed to be CO2-philic and CO2-phobic, respectively. For the CO2-philic surface, obviously surface adsorption is observed for the surfactant molecules. The various energy profiles were used to monitor the lengthy dynamics process of the adsorption and self-assembly for surfactant micelles or monomers in the confined spaces. The equilibrium properties, including the morphologies and micelle-size distributions of absorbed surfactants, were evaluated based on the equilibrium trajectory data. The interaction between the surfactant and the surface produces an obvious effect on the dynamics rate of surfactant adsorption and aggregation, as well as the final self-assembly equilibrium structures of the adsorbed surfactants. However, for the CO2-phobic surfaces, there are scarcely adsorption layers of surfactant molecules, meaning that the CO2-phobic surface repels the surfactant molecules. It seems to conclude that the CO2 solvent depletion near the interfaces determines the surface repellence to the surfactant molecules. The effect of the CO2-phobic surface confinement on the surfactant micelle structure in the supercritical CO2 has also been discussed. In summary, this study on the microscopic behaviors of surfactant/Sc-CO2 in confined pores will help to shed light on the surfactant self-assembly from the Sc-CO2 fluid phase onto solid surfaces and nanoporous media.  相似文献   

13.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

14.
Adsorption of surfactants and polymers at solid-liquid interfaces is used widely to modify interfacial properties in a variety of industrial processes such as flotation, ceramic processing, flocculation/dispersion, personal care product formulation and enhanced oil recovery. The behavior of surfactants and polymers at interfaces is determined by a number of forces, including electrostatic attraction, covalent bonding, hydrogen bonding, hydrophobic bonding, and solvation and desolvation of various species. The extent and type of the forces involved varies depending on the adsorbate and the adsorbent, and also the composition and other characteristics of the solvent and dissolved components in it. The influence of such forces on the adsorption behavior is reviewed here from a thermodynamics point of view. The experimental results from microcalorimetric and spectroscopic studies of adsorbed layers of different surfactant and polymer systems at solid-liquid interfaces are also presented. Calorimetric data from the adsorption of an anionic surfactant, sodium octylbenzenesulfonate, and a non-ionic surfactant, dodecyloxyheptaethoxyethylalcohol, and their mixtures on alumina, yielded important thermodynamic information. It was found that the adsorption of anionic surfactants alone on alumina was initially highly exothermic due to the electrostatic interaction with the substrate. Further adsorption leading to a solloid (hemimicelle) formation is proposed to be mainly an entropy-driven process. The entropy effect was found to be more pronounced for the adsorption of anionic-non-ionic surfactant mixtures than for the anionic surfactant alone. Fluorescence studies using a pyrene probe on an adsorbed surfactant and polymer layers, along with electron spin resonance (ESR) spectroscopy, reveal the role of surface aggregation and the conformation of the adsorbed molecules in controlling the dispersion and wettability of the system.  相似文献   

15.
A model for the adsorption of ionic surfactants on oppositely charged solid surfaces of uniform charge density is developed. The model is based on the assumption that, on the solid surface, adsorbed surfactant monomers, monolayered and bilayered surfactant aggregates of different sizes and specifically adsorbing ions of added electrolyte constitute a mixture of hard discs. It means that only excluded area interactions between the surface discs are taken into account. To avoid a rapid two-dimensional condensation of the adsorbed surfactant the potential energy per molecule in the surface aggregates, which is a sum of chemical and electrostatic interactions, is assumed to decrease linearly with the increasing aggregate size. The electrostatic interactions of ionic species with the charged solid surface are described in terms of the Guy-Chapman theory of the double layer formation. The appropriate equations for adsorption isotherms of surfactant and electrolyte ions are derived and used to predict the experimental adsorption isotherms of DTAB on the precipitated silica at two different salt concentrations in the aqueous solution, On the basis of the obtained results the evolution of the adsorbed phase structure and the charge of silica particles with an increasing surface coverage is discussed.  相似文献   

16.
Adsorption of organic molecules on silica surface   总被引:4,自引:0,他引:4  
The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review.  相似文献   

17.
测定了癸基和辛基-甲亚基亚砜在硅胶/水溶液界面的吸附以及溶液在石英界面的接触角. 研究了温度和pH值对吸附的影响. 吸附等温线似应归入Giles分类的L4型. 饱和吸附层的平均分子面积为27-30A^2. 二个同系物的γ/γ-c/cmc曲线彼此重叠. 吸附温度系数在低浓度范围是负性的在高浓度范围是正性的. 接触角的测量表面吸附使硅胶表面疏水. 从实验结果考虑到吸附过程由二个阶段组成: 一是在低浓度范围由固体表面和亚砜基之间的相互作用, 另一过程是在高浓度范围中, 被吸附的表面活性剂分子及其在溶液中的疏水作用.  相似文献   

18.
The adsorption of the cationic surfactant, hexadecyl trimethyl ammonium bromide, C16TAB, onto model cellulose surfaces, prepared by Langmuir-Blodgett deposition as thin films, has been investigated by neutron reflectivity. Comparison between the adsorption of C16TAB onto hydrophilic silica, a hydrophobic cellulose surface, and a regenerated (hydrophilic) cellulose surface is made. Adsorption onto the hydrophilic silica and onto the hydrophilic cellulose surfaces is similar, and is in the form of surface aggregates. In contrast, the adsorption onto the hydrophobic cellulose surface is lower and in the form of a monolayer. The impact of the surfactant adsorption and the in situ surface regeneration on the structure of the cellulose thin films and the nature of solvent penetration into the cellulose films are also investigated. For the hydrophobic cellulose surface, intermixing between the cellulose and surfactant occurs, whereas there is little penetration of surfactant into the hydrophilic cellulose surface. Measurements show that solvent exchange between the partially hydrated cellulose film and the solution is slow on the time scale of the measurements.  相似文献   

19.
Nonionic surfactants such as Tween 80 are used commercially to minimize protein loss through adsorption and aggregation and preserve native structure and activity. However, the specific mechanisms underlying Tween action in this context are not well understood. Here, we describe the interaction of the well-characterized, globular protein lysozyme with Tween 80 at solid–water interfaces. Hydrophilic and silanized, hydrophobic silica surfaces were used as substrates for protein and surfactant adsorption, which was monitored in situ, with ellipsometry. The method of lysozyme and Tween introduction to the surfaces was varied in order to identify the separate roles of protein, surfactant, and the protein–surfactant complex in the observed interfacial behavior. At the hydrophobic surface, the presence of Tween in the protein solution resulted in a reduction in amount of protein adsorbed, while lysozyme adsorption at the hydrophilic surface was entirely unaffected by the presence of Tween. In addition, while a Tween pre-coat prevented lysozyme adsorption on the hydrophobic surface, such a pre-coat was completely ineffective in reducing adsorption on the hydrophilic surface. These observations were attributed to surface-dependent differences in Tween binding strength and emphasize the importance of the direct interaction between surfactant and solid surface relative to surfactant–protein association in solution in the modulation of protein adsorption by Tween 80.  相似文献   

20.
The adsorption free-energy of surfactant on solid surfaces has been calculated by molecular dynamics (MD) simulation for a model surfactant/solvent system. The umbrella-sampling with the weight histogram analysis method (WHAM) was applied. The entropic and enthalpic contributions to the full potential of mean force (PMF) were obtained to evaluate the detailed thermodynamics of surfactant adsorption in solid/liquid interfaces. Although we observed that this surfactant adsorption process is driven mainly by a favorable enthalpy change, a highly unfavorable entropic contribution still existed. By decomposing the free energy (including its entropic and enthalpic components) into the solvent-induced contribution and the surfactant-wall term, the effect of surface and solvent on the adsorption free-energy has been distinguished. The contribution to the PMF from the surface effect is thermodynamically favorable, whereas the solvent term displays an obviously unfavorable component with a monotonic increase as the surfactant approaches to the surface. The impact of various interactions from the surfaces (both solvent-philic and solvent-phobic) and the solvent on the adsorption PMF of surfactant has been compared and discussed. Compared to the solvent-philic surface, the solvent-phobic surface generates more stable site for the surfactant adsorption. However, the full PMF profile for the solvent-phobic system shows a clear positive maximum value at the bulk-interface transition region, which leads to a considerable long-range free-energy barrier to the surfactant adsorption. These results have been analyzed in terms of the local interfacial structures. In summary, this comprehensive study is expected to reveal the microscopic interaction mechanisms determining the surfactant adsorption on solid surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号