首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. A partial least-squares calibration (PLS) method has been developed for simultaneous quantitative determination of escin (ES) and diethylamine salicylate (DAS) in pharmaceutical preparations. The resolution of these mixtures has been accomplished without prior separation or derivatisation, by using partial least-squares (PLS-2) regression analysis of electronic absorption spectral data. The experimental calibration matrix was constructed with 9 samples. The concentration ranges considered were 10, 20, 30 (ES) and 40, 50, 60 (DAS) μg cm−3. The absorbances were recorded between 200 and 325 nm every 5 nm. Proposed method was compared with conventional spectrophotometric method. The results show that PLS-2 is a simple, rapid, and accurate method applied to the determination of these compounds in pharmaceuticals.  相似文献   

2.
Simultaneous determination of enalapril maleate (ENA) and nitrendipine (NIT) in pharmaceutical preparations was performed using liquid chromatography (LC) and the partial least-squares-1 (PLS-1) method. In LC, the separation was achieved on a C8 column and the optimum mobile phase for good separation in a gradient elution programme was found to be acetonitrile-water (φ r = 81: 19) and optimum flow-rate, temperature, injection volume, and detection wavelength were set at 1.0 mL min−1, 25°C, 10 μL, and 210 nm, respectively. Dienogest was selected as an internal standard. In the spectrophotometry, a PLS-1 chemometric method was used. The absorbance data matrix related to the concentration data matrix was established by measurement of absorbances in their zero order spectra with an increment of Δλ = 1 nm in the 220–290 nm range for ENA and with Δλ = 1 nm in the 230–290 nm range for NIT in the PLS-1 method. Following this step, calibration was established by using this data matrix to predict the unknown concentrations of ENA and NIT in their binary mixture. These optimised methods were validated and successfully applied to a pharmaceutical preparation in tablet form and the results were subjected to comparison.  相似文献   

3.
Two spectrophotometric methods were applied to the simultaneous assay of chlorhexidine hydrochloride (CHL) and lidocaine hydrochloride (LIH) in pharmaceutical formulations. Using derivative spectrophotometry, CHL was determined by measurement of its first derivative signal at 290 nm (peak to zero amplitude) in the concentration range 5–9 μg/mL, and LIH was analysed by measurement of its second derivative signals at 272 and 276 nm (peak to peak amplitude) in the concentration range 160–480 μg/mL. With the partial least-squares (PLS-2), the experimental calibration matrix was constructed using 9 samples. The concentration ranges considered were 5–7 μg/mL for CHL and 220, 240, 260 μg/mL for LIH. The absorbances were recorded between 240 and 310 nm at every 5 nm.  相似文献   

4.
A direct method for the simultaneous determination of naproxen and salicylate in human serum is reported, based on a combination of spectrofluorometric measurements with two multivariate calibration techniques: partial least-squares (PLS-1) and the novel net analyte preprocessing (NAP). The method is rapid, selective and sensitive, and is based on the measurement of the fluorescence spectra of NH3 alkalinized whole human sera at the excitation wavelength of 315 nm. It can be applied within the ranges of concentrations 50-200 ng ml−1 for naproxen and 100-300 ng ml−1 for salicylate. The employed chemometric techniques have been compared on the basis of the statistical indicators for calibration and validation. Reproducibility and interference studies in abnormal sera have also been carried out.  相似文献   

5.
Summary.  A new selective, sensitive, and simple kinetic method is developed for the determination of trace amounts of iodide. The method is based on the catalytic effect of iodide on the reaction of triflupromazine (TFP) with H2O2. The reaction is followed spectrophotometrically by tracing the oxidation product at 498 nm within 1 min after addition of H2O2. The optimum reaction conditions are TFP (0.4 × 10−3 M), H2SO4 (1.0M), H3PO4 (2.0M), and H2O2 (1.6M) at 30°C. Following this procedure, iodide can be determined with a linear calibration graph up to 4.5 ng ċ cm−3 and a detection limit of 0.04 ng ċ cm−3, based on the 3 Sb criterion. The method can also be applied to the determination of iodate and periodate ions. Determination of as little as 0.2, 1.0, 2.0, and 4.0 ng ċ cm−3 of I, IO3 -, or IO4 - in aqueous solutions gave an average recovery of 98% with relative standard deviations below 1.6% (n = 5). The method was applied to the determination of iodide in Nile river water and ground waters as well as in various food samples after alkaline ashing treatment. The method is compared with other catalytic spectrophotometric procedures for iodide determination. Received January 19, 2001. Accepted (revised) March 12, 2001  相似文献   

6.
 A new selective, sensitive, and simple kinetic method is developed for the determination of trace amounts of iodide. The method is based on the catalytic effect of iodide on the reaction of triflupromazine (TFP) with H2O2. The reaction is followed spectrophotometrically by tracing the oxidation product at 498 nm within 1 min after addition of H2O2. The optimum reaction conditions are TFP (0.4 × 10−3 M), H2SO4 (1.0M), H3PO4 (2.0M), and H2O2 (1.6M) at 30°C. Following this procedure, iodide can be determined with a linear calibration graph up to 4.5 ng ċ cm−3 and a detection limit of 0.04 ng ċ cm−3, based on the 3 Sb criterion. The method can also be applied to the determination of iodate and periodate ions. Determination of as little as 0.2, 1.0, 2.0, and 4.0 ng ċ cm−3 of I, IO3 -, or IO4 - in aqueous solutions gave an average recovery of 98% with relative standard deviations below 1.6% (n = 5). The method was applied to the determination of iodide in Nile river water and ground waters as well as in various food samples after alkaline ashing treatment. The method is compared with other catalytic spectrophotometric procedures for iodide determination.  相似文献   

7.
The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of CN and SCN ions is described. The method is based on the difference in the rate of the reaction between CN and SCN ions with chloramine-T in a pH 4.0 buffer solution and at 30 °C. The produced cyanogen chloride (CNCl) reacts with pyridine and the product condenses with barbituric acid and forms a final colored product. The absorption kinetic profiles of the solutions were monitored by measuring absorbance at 578 nm in the time range 20-180 s after initiation of the reaction with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 31 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 10.0-900.0 and 50.0-1200.0 ng mL−1 for CN and SCN ions, respectively. The proposed method was successfully applied to the simultaneous determination of cyanide and thiocyanate in water samples.  相似文献   

8.
In weakly acidic buffer medium, vitamin B1 (VB1) interacts with gold nanoparticles to form a binding product, which resulted in a significant enhancement of resonance Rayleigh scattering (RRS) intensity and the appearance of a new RRS spectrum. The maximum RRS peak was at 368 nm, and there are three smaller scattering peaks that were at 284 nm, 440 nm and 495 nm, respectively. The enhanced RRS intensity (ΔI) was directly proportional to the concentration of VB1 in the range of 0–2.8 × 10−7 mol L−1. The method had high sensitivity and its detection limit (3σ) was 0.9 ng mL−1. The optimum conditions and the influencing factors have been investigated. The method had good selectivity, which could be observed from the influence of coexisting substances. A sensitive, simple and fast RRS method for the determination of VB1 with gold nanoparticle probe has been developed. In addition, the reasons for RRS enhancement were discussed.  相似文献   

9.
A partial least squares (PLS-1) calibration model based on kinetic—spectrophotometric measurement, for the simultaneous determination of Cu(II), Ni(II) and Co(II) ions is described. The method was based on the difference in the rate of the reaction between Co(II), Ni(II) and Cu(II) ions with 1-(2-pyridylazo)2-naphthol in a pH 5.8 buffer solution and in micellar media at 25°C. The absorption kinetic profiles of the solutions were monitored by measuring the absorbance at 570 nm at 2 s intervals during the time range of 0–10 min after initiation of the reaction. The experimental calibration matrix for the partial least squares (PLS-1) model was designed with 30 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.1-2 μg mL−1 for each cation. The proposed method was successfully applied to the simultaneous determination of Cu(II), Ni(II) and Co(II) ions in water and in synthetic alloy samples.   相似文献   

10.
PLS-1, a variant of the partial least-squares algorithm was used for the solid-phase spectrofluorimetric determination of acetylsalicylic acid (ASA) and caffeine (CF) in pharmaceutical formulations. The method allows the simultaneous quantification of the analytes, as the closely overlapping spectral bands are efficiently solved. Sample preparation prior to analysis is not required. The calibration set consisted of 83 samples with 50-170 mg g−1 ASA plus 5-20 mg g−1 CF; another set of 25 samples was used for external validation. Agreement between predicted and experimental concentrations was fair (r = 0.987 and 0.974 for ASA and CF models). For both models, the prediction performance was evaluated in terms of the coefficient of variability (CV), relative predictive determination (RPD), and ratio error range (RER). The final PLS-1 models were used for the determination of ASA and CF in pharmaceutical formulations.  相似文献   

11.
A rapid, ultra high-performance liquid chromatographic (UHPLC) method has been developed and validated for simultaneous identification and analysis of the isoflavones genistein, daidzein, glycitin, puerarin, and biochanin A, and the flavonoids (±)-catechin, (−)-epicatechin, rutin, hesperidin, neohesperidin, quercitrin, and hesperetin in human urine. Urine samples were incubated with β-glucuronidase/sulfatase. UHPLC was performed with a Hypersil Gold (50 × 2.1 mm, 1.9 μm) analytical column. Elution was with a gradient prepared from aqueous trifluoroacetic acid (0.05%) and acetonitrile. UV detection was performed at 254 and 280 nm. The calibration curves were indicative of good linearity (r 2 ≥ 0.9992) in the range of interest for each analyte. LODs ranged between 15.4 and 107.0 ng mL−1 and 3.9 and 20.4 ng mL−1 for flavonoids and isoflavones, respectively. Intra-day and inter-day precision (C.V., %) was less than 3.9% and 3.8%, respectively, and accuracy was between 0.03% and 5.0%. Recovery was 70.35–96.58%. The method is very rapid, simple, and reliable, and suitable for pharmacokinetic analysis. It can be routinely used for simultaneous determination of these five isoflavones and seven flavonoids in human urine. The method can also be applied to studies after administration of pharmaceutical preparations containing isoflavones and flavonoids to humans.  相似文献   

12.
A simple and sensitive cloud point extraction method has been developed for the preconcentration of ultra-trace amounts of gold as a prior step to its determination by electrothermal atomic absorption spectrometry. It is based on the extraction of gold in hydrochloric acid medium using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding a chelating agent. The preconcentration of a 50 mL sample solution was thus enhanced by a factor of 200. The resulting calibration graph was linear in the range of 10–200 ng L−1 with a correlation coefficient of 0.9993. The limit of detection (3s) obtained under optimal conditions was 2.0 ng L−1. The relative standard deviation for 10 replicate determinations at a 100 ng L−1 Au level was 3.6%. The method was applied to the ultra-trace determination of gold in water and copper samples.  相似文献   

13.

Abstract  

A partial least-squares (PLS) modeling was developed for the simultaneous spectrophotometric determination of adenine (AD) and guanine (GU). The determination of these analytes is pharmacologically necessary. Multivariate calibration is used because of spectral overlapping. The calibration set contained AD and GU in the concentration range of 1.4–20.3 and 1.5–25.7 μg cm−3, respectively. The absorption spectra were recorded from 200 to 300 nm. The predicted residual error sum-of-squares for AD and GU was 0.0500 and 0.4000 for number of principal components 3 and 2, respectively. The root mean square error of prediction for AD and GU was 0.0913 and 0.2582, respectively. The limits of detection were 0.02 and 0.03 μg cm−3 for AD and GU, respectively. The proposed method allows the simultaneous determination of AD and GU in spiked real matrixes of human urine, serum, and plasma.  相似文献   

14.
Summary.  A highly selective, sensitive, and simple catalytic method for the determination of molybdenum in natural and waste waters was developed. It is based on the catalytic effect of Mo(VI) on the oxidation of 2-aminophenol with H2O2. The reaction is monitored spectrophotometrically by tracing the oxidation product at 430 nm after 10 min of mixing the reagents. Addition of 800 μg · cm−3 EDTA conferred high selectivity; however, interfering effects of Au(III), Cr(III), Cr(VI), and Fe(III) had to be eliminated by a reduction and co-precipitation procedure with SnCl2 and Al(OH)3. Mo(VI) shows a linear calibration graph up to 11.0 ng · cm−3; the detection limit, based on the 3S b-criterion, is 0.10 ng · cm−3. The unique selectivity and sensitivity of the new method allowed its direct application to the determination of Mo(VI) in natural and waste waters. Received April 11, 2001. Accepted (revised) June 18, 2001  相似文献   

15.
 A fluorescence quenching method for the determination of vanadium (V) based on the vanadium- catalyzed oxidation of rhodamine 6G (R6G) with periodate in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA) in sulfuric acid medium is described. The fluorescence was measured with excitation and emission wavelengths of 525 and 555 nm, respectively. The calibration graph for vanadium (V) had linear ranges of 3.0 × 10−9–1.5 × 10−8 mol/l and 1.5 × 10−8–4.0 × 10−8 mol/l, respectively. The detection limit was 1.7 × 10−9 mol/l. The proposed method was successfully applied to the determination of vanadium (V) in river water, rain water and cast iron samples. Received June 29, 2001 Revision October 9, 2001  相似文献   

16.
This study describes the design and optimisation of a field flow system for the in-situ collection and on-line determination of phosphate, nitrate and nitrite by flow injection analysis-spectrophotometry. The method is based on the initial determination of phosphate as its phosphoantimonylmolybdenum blue complex which is then oxidized on-line by nitrite and the decrease in absorbance is monitored at 880 nm. Nitrate is determined as the difference between total and initial nitrite content in a separate flow after reduction to nitrite in a cadmium reductive column. The calibration curves were linear in the range 0–2.00 mg L−1 P-phosphate, 0–10.00 mg L−1 nitrite and 0–7.00 mg L−1 nitrate with correlation coefficients of 0.9979, 0.9993 and 0.9995, respectively. The detection limits, calculated as 3S/N, were 0.15 mg L−1 for P-phosphate, 0.17 mg L−1 for nitrite and 0.09 mg L−1 for nitrate. The reproducibility was below 3.0% (n = 7). Method validation in the analysis of natural water and wastewater samples revealed that it can efficiently be applied to the determination of the target analytes, with recoveries in the range of 92–108%. Correspondence: Athanasios G. Vlessidis, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece  相似文献   

17.
 The 24Mg(α, p)27 Al nuclear reaction was applied for the determination of the magnesium distribution in near-surface layers of materials. The cross sections of this reaction were determined in the energy region between 4.5 and 5.5 MeV in steps of 5 to 10 KeV (θlab : 158°) using thin magnesium films. The investigated projectile energy region included five main resonances allowing the determination of magnesium. The uncertainty of the cross-section determination was of the order of 7%. The applicability of the technique was tested using Mg-implanted AISI 321 steel samples. Depth resolution of 100 nm and detection limits of the order of 0.1 ppm were achieved for the determination of magnesium in steel samples using the 4805 keV resonance of the 24Mg(α, p)27 Al nuclear reaction. The shape and height of the magnesium depth-profile in the Mg-implanted steel samples were compared with corresponding values obtained by X-ray photoelectron spectroscopy. Received July 15, 1999. Revision March 30, 2000.  相似文献   

18.
 A simple, sensitive and selective kinetic spectrofluorimetric determination of NO2 sampled by the droplet method in the atmosphere was proposed on the basis of the reaction of safranin O with nitrite. By this reaction, a diazonium salt is formed, which causes a fluorescent reddish-orange dye color of the solution to change into a non fluorescent blue color. The reaction was monitored fluorimetrically by measuring the decrease in fluorescence intensity of safranin O at (λexem = 536 nm/579 nm) by a fixed-time method. The experimental conditions were optimized. Under the optimum conditions in the concentration range of 7.5–400 ng/ml, a linear calibration curve (r2 = 0.9978) was obtained with a detection limit of 7.5 ng/ml. The method was applied successful ly to the determination of nitrite in spiked water and NO2 in the atmosphere, as sampled by a liquid droplet method. Received August 23, 1999. Revision February 29, 2000.  相似文献   

19.
Summary.  In the present work, rutin (3,3′ ,4′ ,5,7-pentahydrohyflavone-3-rhamnoglucoside) was determinated via a complexing reaction with a titanyloxalate anion. K2[TiO(C2O4)2] and rutin react in 50% ethanol forming a 1:2 complex in a pH range from 4.00 to 11.50, in which the TiO(C2O4)2 2− ion is linked to rutin through the 4-carbonyl and 5-hydroxyl group. The thermodynamic stability constant log β2 0 of the complex is determined to 10.80 at pH = 6.50. The change of the standard Gibbs free energy Δ G0 amounts to −61 kJċ mol−1, indicating that the process of complex formation is spontaneous. The optimal conditions for the spectrophotometric determination of microconcentrations of rutin are at pH=6.40 and λ= 430 nm, where the complex shows an absorption maximum with a molar absorption coefficient a 430=(60±2)ċ103 dm3ċ mol−1ċ cm−1. The method is applied rutin determination from tablets. Received January 4, 2000. Accepted (revised) February 17, 2000  相似文献   

20.
 In the present work, rutin (3,3′ ,4′ ,5,7-pentahydrohyflavone-3-rhamnoglucoside) was determinated via a complexing reaction with a titanyloxalate anion. K2[TiO(C2O4)2] and rutin react in 50% ethanol forming a 1:2 complex in a pH range from 4.00 to 11.50, in which the TiO(C2O4)2 2− ion is linked to rutin through the 4-carbonyl and 5-hydroxyl group. The thermodynamic stability constant log β2 0 of the complex is determined to 10.80 at pH = 6.50. The change of the standard Gibbs free energy Δ G0 amounts to −61 kJċ mol−1, indicating that the process of complex formation is spontaneous. The optimal conditions for the spectrophotometric determination of microconcentrations of rutin are at pH=6.40 and λ= 430 nm, where the complex shows an absorption maximum with a molar absorption coefficient a 430=(60±2)ċ103 dm3ċ mol−1ċ cm−1. The method is applied rutin determination from tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号