首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Abstract

A thioether unsymmetrical N2S donor Schiff base ligand, N-2-((2-nitrophenyl)thio)phenyl)-1-(pyrrole-2-yl)methanimine (HL) and its five complexes [NiL2], [CuL2], [ZnHL(H2O)2(OAc)2], [CdHL(H2O)2(OAc)2]·2H2O and [MnHL(H2O)2(OAc)2]·2H2O were synthesized. The ligand and metal complexes were characterized by spectroscopic methods (FT-IR, 1H and 13C NMR, UV–Vis), elemental analyses, mass spectrometry, and conductance measurements. Of these complexes, [NiL2] was structurally characterized by single-crystal X-ray crystallography. In this complex, two ligands function as monobasic N2S tridentate and coordinate through pyrrole-N, thioether-S, and azomethine-N, and the nickel(II) is in distorted octahedral environments.  相似文献   

2.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

3.
Summary CuII, NiII, CoII, ZnII and PdII complexes of tridentate Schiff base ligands derived from the condensation of benzoic acid hydrazides with 2-aminonicotinaldehyde have been prepared and characterized. For M=Cu, Ni, Co and Zn the complexes were formulated as [M(ligand)(H2O)X] (X=Cl, Br), with a distorted octahedral geometry and tridentate Schiff base ligands. The Pd complexes were formulated as Pd(ligand)Cl2, with square planar geometries and bidentate Schiff base ligands. The e.s.r. spectra of the CuII complexes are discussed.  相似文献   

4.
Abstract

Nickel(II) complexes ([NiL2]) of tridentate Schiff bases (HL) containing amide functionality are described. The Schiff bases, Hpabh and Hpamh (H refers to the dissociable amide proton), are derived from 2-pyridinecarboxaldehyde and benzhydrazide, and 2-pyridinecarboxaldehyde and 4-methoxybenzhydrazide, respectively. The reaction of two equivalents of HL and one equivalent of Ni(O2CCH3)2 · 4H2O in methanol affords [NiL2] in high yield. The complexes are characterised by analytical, spectroscopic, magnetic and electrochemical techniques. The structures of both complexes have been determined by X-ray crystallography. The distorted octahedral NiN4O2 sphere in each complex is assembled by the two meridional N,N,O-donor ligands. Each ligand binds the metal ion via the pyridine-N, imine-N and deprotonated amine-O atoms. The solid state room temperature (298 K) magnetic moments are consistent with a d 8 (S = 1) ground state electronic configuration. Electronic spectra of the complexes in CH3CN solutions display the v 1 band at ~ 850 nm followed by charge transfer bands in the range 381–241 nm. The [NiIIIL2]+-[NiIIL2] couple was observed in the cyclic voltammograms of both complexes. The potentials are 0.97 and 0.91 V (versus Ag-AgCl) for [Ni(pabh)2] and [Ni(pamh)2], respectively.  相似文献   

5.
The Schiff base N-crotonyl-2-hydroxyphenylazomethine HL, derived from the reaction of acrylamide and salicylaldehyde, was synthesised. Polymeric complexes were obtained from the reaction of polymeric HL with divalent metals. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods and compared with that previously reported for the analogous monomeric ligand. These studies revealed tetrahedral geometries around the metal centres for Mn(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes of general formula [M(L)Cl], octahedral for Ni(II) and Cu(II) complexes of general formula [M′(L)Cl(H2O)2], and square planar for Pd(II) complex of general formula [Pd(L)Cl].  相似文献   

6.
Five new transition metal complexes [MnL(OAc)]·H2O (1), [FeLCl2] (2), [NiL2]·H2O (3), [CuLCl] (4) and [ZnL2]·2H2O (5) have been synthesized using a tridentate Schiff base ligand, HL (quinoxaline-2-carboxalidine-2-amino-5-methylphenol) and the complexes have been characterized by physicochemical and spectroscopic techniques. The spectral analyses reveal an octahedral geometry for 3, square pyramidal structure for 2 and square planar structure for 4. Analytical and physicochemical data indicate tetrahedral structure for 1 and octahedral structure for 5. The crystallographic study reveals that [NiL2]·H2O shows distorted octahedral geometry with a cis arrangement of N4O2 donor set of the bis Schiff base and exhibits a two-dimensional polymeric structure parallel to [0 1 0] plane. The complexes were screened for catalytic phenol hydroxylation reaction. Coordinatively unsaturated manganese(II), iron(III) and copper(II) complexes were found to be active catalysts. The poor catalytic activity of the nickel(II) complex is due to coordinatively saturated octahedral nature of the complex. Maximum conversion of phenol was observed for the copper(II) complex and the major product was catechol.  相似文献   

7.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

8.
The electrochemical oxidation of anodic nickel in acetonitrile solution containing both (a) a Schiff base HL derived from H-pyrrole-2-carbaldehyde and a substituted aniline, and (b) a nitrogen ligand (1, 10-phenanthroline (phen), 2,2′-bipyridine (bipy) or pyridine (py)) yielded the mixed complexes NiL2 · phen, NiL2 · bipy and NiL2 · (py)2. The crystal structure of 2,2′-bipyridine bis{2-[(phenyl)iminomethyl]pyrrolato}nickel(II) was determined by X ray diffraction. Crystals are triclinic space group P1 , with four molecules in the unit cell of dimensions a = 12.316(1), b = 13.169(4), c = 17.251(3) Å, α = 82.67(3)°, β = 83.66(1)° and γ = 87.34(2)°, and consist of monomeric molecules in which the central NiN6 unit has a distorted octahedral geometry.  相似文献   

9.
Two new square-planar Ni(II) complexes, [NiL1(NCS)] (1) and [NiL2(N3)] (2) have been synthesized with the unsymmetrical tridentate Schiff base ligands [(CH3)2NCH2CH2N=C(CH3)CH=C(OH)(C6H5)], L 1 H, derived from benzoylacetone and 2-dimethylaminoethylamine and [(CH3CH2)2NCH2CH2N=C(CH3)CH=C(OH)(C6H5)], L 2 H, derived from benzoylacetone and 2-diethylaminoethylamine, respectively. The complexes have been characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, electrochemical and thermal methods (where applicable). Structures have been established by the single-crystal X-ray diffraction technique which reveals the discrete nature of the complexes in which the metal centers adopt a distorted square planar geometry. Coordination environments of the metal ions in the complexes are satisfied with two different unsymmetrical Schiff base ligands having similar N2O donor sets and a terminal pseudohalide anion (thiocyanate for 1 and azide for 2).  相似文献   

10.
Some Ni(II) complexes with 5,7-dicloro-8-aminoquinoline (dcaq), 5,7-dibromo-8-aminoquinoline(dbaq) and 5,7-diiodo-8-aminoquinoline(diaq) are described. The compounds are of stoichiometry NiL2X2(L= dcaq, dbaq, diaq; X= NO?3 and L= dbaq; X= Cl?, Br?, I?, NCS?) and NiLX2·H2O(L= dcaq, diaq; X= Cl?). The electronic spectra and magnetic susceptibility data at room temperature, are consistent with octahedral geometry for the Ni(II) in each compound. I.r. spectra show the presence of ionic and bridging nitrate groups in the compounds NiL2(NO3)2(L= dcaq, dbaq, diaq) and we assign them polymeric structures. Polymeric structures with bridging chloride are proposed for the compounds NiLCl2·H2O(L= dcaq, diaq) and monomeric octahedral structures for NiL2X2(L= dbaq; X= Cl, Br, I, NCS).  相似文献   

11.
Abstract Two new square planar Cu(II) and Ni(II) complexes, [CuL1(NCO)] (1) and [NiL2(N3)] (2) have been synthesized with two different tridentate N2O donor Schiff base ligands L 1 H (1:1 condensation product of benzoylacetone and 2-diethylaminoethylamine) and L 2 H (1:1 condensation product of benzoylacetone and 2-dimethylaminoethylamine), respectively. Both the complexes 1 and 2 have been characterized by elemental analysis, IR, UV-Vis spectroscopy, room temperature magnetic susceptibility measurement, electrochemical, thermal, and single crystal X-ray diffraction studies. Structural studies reveal that in both the complexes metal centers have square planar environment with N2O donor set of Schiff base ligands and terminal pseudohalide anions (isocyanate for 1 and azide for 2) at four coordination sites of square plane. Graphical abstract Square planar complexes of Cu(II) and Ni(II) with N 2 O donor set of two Schiff base ligands: synthesis and structural aspects Subhra Basak, Soma Sen, Samiran Mitra, C. Marschner, W. S. Sheldrick Two new square planar Cu(II) and Ni(II) complexes, [CuL1(NCO)] (1) and [NiL2(N3)] (2) have been synthesized with two different tridentate N2O donor Schiff base ligands L 1 H and L 2 H respectively. Both the complexes 1 and 2 have been characterized by elemental analysis, IR, UV-Vis spectroscopy, room temperature magnetic susceptibility measurement, electrochemical, thermal and single crystal X-ray diffraction studies.   相似文献   

12.
The Schiff base 2-bromo-6-[(2-isopropylaminoethylimino)methyl]phenol (HL), derived from 3-bromosalicylaldehyde with N-isopropylethane-1,2-diamine, and its zinc(II) and nickel(II) complexes [Zn(HL)2(NCS)2] (I) and [Ni(HL)2(N3)2)] · 0.25H2O (II) have been prepared and characterized by elemental analyses, IR, and single crystal X-ray crystallographic determination. The crystal of I is orthorhombic: space group Pbca, a = 13.6928(9), b = 9.7203(6), c = 22.926(1) Å, V = 3051.4(3) Å3, Z = 4. The crystal of II is triclinic: space group $P\bar 1$ , a} = 8.0212(7), b = 12.744(1), c = 15.590(2) Å, α = 104.802(3)°, β = 90.561(3)°, γ = 103.130(3)°, V = 1496.6(2) Å3, Z = 1. The zwitterionic Schiff base ligands coordinate to the metal atoms through phenolate O, imine N, and amine N atoms. Each metal atom in the complexes is in octahedral coordination. The effect of these complexes on the antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans were studied.  相似文献   

13.
Four complexes of the nuclear structure NiII–ZnII were prepared with bis-N,N′-(salicylidene)-1,3-propanediamine (LH2), bis-N,N′-(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2) and the reduced derivatives of these Schiff bases, bis-N,N′-(2-hydroxybenzyl)-1,3-propanediamine (LHH2), bis-N,N′-(2-hydroxybenzyl)-2,2′-dimethyl-1,3-propanediamine (LDMHH2). The complexes were characterized using IR spectroscopy, elemental analysis and thermogravimetric methods. The stoichiometry of the complex molecules were found to be NiL·ZnCl2·(DMF)2, NiLDM·ZnCl2·(DMF)2, NiLH·ZnCl2·(DMF)2 and NiLDMH·ZnCl2·(DMF)2. The molecular models of the complexes prepared with the reduced Schiff bases were determined according to the X-ray diffraction method. It is seen that in these complexes Ni(II) is in octahedral and Zn(II) is in tetrahedral coordination sphere. Ni(II) ion is coordinated between two nitrogen and two oxygen donors of the ligand and oxygen donors of the two DMF molecules. Zn(II) ion on the other hand is coordinated between two oxygen of the organic ligand forming two μ bonds. It also coordinates two Cl ions. The thermogravimetric analysis showed that the complex NiLDMH·ZnCl2·(DMF)2 containing methyl groups is more stable than the other complex NiLH·ZnCl2·(DMF)2 containing reduced Schiff base. The coordinative DMF molecules in NiLDMH·ZnCl2·(DMF)2 were thermally cleaved. However, the cleavage of DMF molecules NiLH·ZnCl2·(DMF)2 resulted in the thermal degradation of the complex. In order to explain the TG data of the ligands were titrated in non-aqueous medium and their basicity strengths were determined. It was found that the basicity of the ligands containing two methyl groups were stronger. It is understood that the two methyl groups increase the negative charge density on nitrogen causing an increase in complex stability.  相似文献   

14.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

15.
Ni(II), Cu(II), and Co(II) complexes, ML2, with a new thioether containing ONS donors were synthesized, where L = deprotonated Schiff base. The analytical, spectral (FTIR, 1H NMR, and UV-vis), conductivity, and magnetic studies show that the metal complexes possess octahedral geometry and are non-electrolytes. The coordination mode of ligand, 1, and nickel(II) complex, NiL2, 2, was determined by single-crystal X-ray diffraction studies. Here, the nickel is coordinated to two oxygens, two nitrogens, and two sulfurs of two tridentate ligands with slightly distorted octahedral environment around nickel. The copper complex shows very good catalytic activities towards oxidation of organic thioethers to the corresponding sulfoxide predominantly using H2O2 as the oxidant.  相似文献   

16.
Summary The ligand 3-azabicyclo[3.2.2]nonane-3-thiocarboxylic acid 2-[1-(2-pyridinyl)ethylidene]hydrazide (HL), which is observed in an unusual tautomeric form in the solid state, and its selenium analogue (HLSe) have been used to prepare a series of nickel(II) complexes. Compounds of the general formula [NiLX] (X=Cl, Br, NCS, N3, NO2 or NCSe) as well as [Ni(LSe)Cl] have been found to be diamagnetic, planar complexes. A single crystal study of [NiL(NCS)] shows the deprotonated ligand bound in a tridentate mannervia its pyridyl nitrogen, imine nitrogen and the thione sulphur atom with the nitrogen atom of the thiocyanato-ligand occupying the fourth coordination position. The solids prepared from the nickel(II) salts having tetrafluoroborate, nitrate and iodide ions approximate to octahedral symmetry and have neutral HL ligands coordinated in a bidentate fashionvia the pyridine and imine nitrogens with the remaining coordination sites being occupied by the anions or water molecules. The [NiL2] solid is also octahedral with the two deprotonated ligands bonding as tridentate groupsvia the same atoms as in the [NiLX] complexes.  相似文献   

17.
Schiff bases (HL) derived from sulfanilamides or aminobenzothiazoles add to Pd(OAc)2 to give complexes of the type PdL2 (1–7) in moderate to excellent yields. Reactions of Schiff bases containing pyrimidine groups, however, gave several products arising from competing coordination of the pyrimidine nitrogen. Palladium complexes and Schiff bases have been investigated as antifungal agents against Aspergillus niger and Aspergillus flavus.  相似文献   

18.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

19.
Two new linear trinuclear complexes, [Co(NiL1)2(SCN)2] (1) and [Co(NiL2)2(H2O)2](ClO4)2?·?2C2H5OH (2), have been prepared by using Co(ClO4)2?·?6H2O and two macrocyclic complex ligands NiL1 and NiL2. L1 and L2 are the doubly deprotonated forms of dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazabicyclo[12.4.015,16]13,18-dicarboxylate and dimethyl 5,6,7,8,15,16-hexahydro-15-methyl-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate, respectively. X-ray single crystal analyses reveal the coordination geometries around Ni(II) in both 1 and 2 are identical and slightly distorted square planar with N4 donors; all Ni–N bonds in the two complexes are very short. The Co(II) ions are at the centers of the trinuclear complexes and have distorted octahedral coordination geometries of O4N2 donors in 1 and an O6 in 2. π?···?π interactions involving aromatic and non-aromatic π-systems join the trinuclear entities to form 2-D layers in the crystals of 1 and 2.  相似文献   

20.
Complexes of 5-(phenylazo)-2-thiohydantoin (L1) and 5-(2-hydroxyphenylazo)-2-thiohydantoin (HL2) with Co(II), Ni(II) and Cu(II) salts have been synthesised and characterized by elemental analysis, conductivity, magnetic susceptibility, UV-Vis, IR, ESR and TG studies. The magnetic and spectral data suggested octahedral geometry for [L1M(OAc)2(H2O)2xH2O {M=Nill and Cull} and [L1CuCl2(H2O)]·H2O (dimeric form for the latter), trigonal bipyramidal geometry for [L2Co(OAc)(H2O)]·2H2O, square pyramidal geometry for [L2Ni(OAc)(H2O)]·H2O and square planar geometry for [L2CuCl]·2H2O. TG studies confirmed the chemical formulations of these complexes and showed that their thermal degradation takes place in three to five steps, depending on the type of the ligand and the geometry of the complex. The kinetic parameters (n, E#, A, ΔH#, ΔS# and ΔG#) of the thermal decomposition stages were computed using the Coats-Redfern and other standard equations and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号