首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Glycidyl azide polymer(GAP) with the advantages of non-volatility and excellent thermal stability is a candidate as a replacement for nitroglycerine(NG) in a double base propellant. The GAP-NC double base propellants were formulated with GAP and nitrocellulose(NC) fibers. Tensile test and SEM characterization indicated that GAP-NC propellants had a homogeneous structure. Thermogravimetric analysis of GAP-NC propellants revealed that the onset decomposition temperature reached a high level ranging from 192.9 to 194.6 °C, which indicated that the substitution of NG with GAP contributed to the safe storage and process operations for double base propellant. The result analysis of decomposition products of GAP-NC propellants showed that the main gas decomposition products of the propellants were NO, NO_2, CO, CO_2, NH_3, CH_4, HCN, N_2, CH_2O and C_2H_4O. The thermal decomposition process of the specimens was proposed.  相似文献   

2.
The influence of porous ammonium perchlorate (POAP) on the thermomechanical and combustion behavior of solid rocket propellants based on polyvinylchloride binder has been investigated. Differential scanning calorimetry, differential thermogravimetry, dynamic mechanical thermal analysis, and scanning electronic microscopy measurements were used for thermomechanical and thermal decomposition properties assessment. The results obtained indicate that lower glass transitions of the propellants and catalytic effect of combustion are obtained with POAP.  相似文献   

3.
酒石酸铅锆的制备、表征及其燃烧催化作用   总被引:1,自引:0,他引:1  
以酒石酸、硝酸氧锆和硝酸铅为原料,合成出了双金属盐酒石酸铅锆,采用有机元素分析、X射线荧光光谱和FTIR对其进行了表征。在程序升温条件下,利用TG/DTG、DSC、固相原位反应池/FTIR联用技术,研究了酒石酸铅锆的热行为和热分解机理,描述了酒石酸铅锆的热分解过程,分析得出其最终分解产物为ZrO2、PbO和C。利用螺压工艺制备了含酒石酸铅锆的推进剂样品,研究了酒石酸铅锆对双基系推进剂燃烧性能的影响,分析了其燃烧催化作用。结果表明,酒石酸铅锆对双基系推进剂的燃烧具有良好的催化作用,是一种高效的燃烧催化剂;酒石酸铅锆热分解的最终产物PbO是催化燃烧的主要活性物质,推进剂燃烧过程中形成了氧化铅-铅循环催化体系,而锆和碳则起辅助催化的作用。  相似文献   

4.
制备了含3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)铅复合物(LCBTATZ)的双基推进剂和改性双基推进剂. 采用热重-微商热重法(TG-DTG)及差示扫描量热法(DSC)研究了其热分解行为和非等温分解动力学并在此基础上评价了其热安全性. 结果表明, LCBTATz-DB复合物中在350-540 K之间只存在一个放热分解峰, LCBTATz-CMDB复合物中存在两个连续的放热分解峰在390-540 K温度范围内, 其机理方程分别为: f(α)=α-1/2和f(α)=2(1-α)3/2. 计算了热加速分解温度(TSADT)、热爆炸临界温度(Tb)、热点火温度(TTIT)和绝热至爆时间(tTlad),其值分别为: DB001复合物TSADT=444.50 K, TTITT=453.96 K, Tb=471.84 K; tTlad=39.36 s; CMDB100复合物, TSADT=442.38 K, TTITT=452.89 K,Tb=464.13 K,tTlad=21.3 s,并以此来评价化合物的热安全性. 考察了LCBTATz-DB以及LCBTATz-CMDB的燃烧性能, 结果表明LCBTATZ 是一种高效的双基燃烧催化剂, 在较大的压力范围内可以显著的提高燃速并且大幅度的降低压力指数. 对于双基推进剂在2-8 MPa压力范围内出现了明显的超燃速现象, 8-12 MPa出现了“麦撒”效应, 对于改性双基推进剂的压力指数降到0.18.  相似文献   

5.
In order to ameliorate the sensitivities, thermal and combustion properties of cyclotrimethylenetrinitramine (RDX), tannic acid (TA) is used to react with lead and copper via in situ self-assembly to coat RDX for preparing RDX@TA-Pb/Cu microcapsules. The structures of RDX@TA-Pb/Cu microcapsules are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier-transform infrared spectra (FT-IR). The surface topography of RDX@TA-Pb/Cu microcapsules are characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The mechanical sensitivities and explosion points of RDX@TA-Pb/Cu microcapsules are measured to study the influence of TA-Pb/Cu shells on mechanical and thermal safeties of RDX. The non-isothermal properties of RDX@TA-Pb/Cu microcapsules are characterized by differential scanning calorimetry (DSC). The catalytic effects of TA-Pb/Cu shells on RDX are characterized by accelerating rate calorimeter (ARC). The residues of RDX@TA-Pb/Cu microcapsules after combustion in air are collected and characterized by SEM and XRD to further study the catalytic effect of TA-Pb/Cu shells. The study results show that a 150 nm TA-Pb/Cu shells are uniformly coated on RDX surfaces. The chemical structure of RDX maintains constant during in situ self-assembly coating process. The mechanical and thermal safeties of RDX are enhanced after coating with TA-Pb/Cu shells. The decomposition and combustion property of RDX can be catalyzed by TA-Pb/Cu, and the catalytic effects of in situ self-assembly coating are better than that of physical mixing. The RDX@TA-Pb/Cu microcapsules can be used in RDX based composite modified double base (CMDB) propellants.  相似文献   

6.
The thermal decomposition of ammonium perchlorate (AP) is considered to be the first step in the combustion of AP-based composite propellants. In this report, the effect of the specific surface area of titanium oxide (TiO2) catalysts on the thermal decomposition characteristics of AP was examined with a series of thermal analysis experiments. It was clear that the thermal decomposition temperature of AP decreased when the specific surface area of TiO2 increased. It was also possible that TiO2 influences the frequency factor of AP decomposition because there was no observable effect on the activation energy.  相似文献   

7.
没食子酸铋锆的制备、表征及其燃烧催化作用   总被引:2,自引:0,他引:2  
以没食子酸、硝酸铋和硝酸氧锆为原料, 首次合成出了双金属有机盐——没食子酸铋锆, 采用有机元素分析、X射线荧光(XRF)光谱和傅里叶变换红外(FTIR)光谱对其进行了表征. 在程序升温条件下, 利用热重(TG)分析、差示扫描量热法(DSC)、固相原位反应池/FTIR 联用技术, 研究了没食子酸铋锆的热行为和热分解机理,描述了没食子酸铋锆的热分解过程, 分析得出其最终分解产物为Bi2O3、ZrO2和C. 利用螺压工艺制备了含没食子酸铋锆的推进剂样品, 研究了没食子酸铋锆对双基(DB)推进剂燃烧性能的影响, 分析了其燃烧催化作用. 结果表明, 没食子酸铋锆对双基推进剂的燃烧具有良好的催化作用, 是一种高效的燃烧催化剂; 没食子酸铋锆热分解的最终产物是催化燃烧的主要物质, 锆和碳则起辅助催化的作用.  相似文献   

8.
The thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature‐programmed mode have been investigated by means of DSC, TG‐DTG and lower rate Thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of the major exothermic decomposition reaction are 1‐a,207.98 kJ*mol?1 and 1015.64 s?1, respectively. The critical temperature of thermal explosion of the compound is 312.87 C. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as: dα/dT=1016.42 (1–α)e‐2.502×104/T As an auxiliary catalyst, the title compound can help the main catalyst lead salt of 4‐hydroxy‐3,5dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX‐CMDB propellant.  相似文献   

9.

Ammonium dinitramide (ADN) is a promising high energy oxidizer for rocket propellants because it offers a good oxygen balance and has a significant energy content. As a result, ADN-based energetic ionic liquid propellants (EILPs) have been studied, based on ADN combined with urea and monomethyl ammonium nitrate (MMAN). The thermal decomposition of ADN in the condensed phase affects the combustion of both pure ADN and ADN-based EILPs; thus, it is important to understand the reactions of EILPs in the condensed phase. The present study assessed the reactivity of ADN mixtures in the condensed phase, focussing on hydrogen abstraction reactions with NO2· formed from the thermal decomposition of ADN. The potential energy surfaces of these reactions were obtained using ab initio calculations. The effects of functional groups and of carbon chain length on hydrogen abstraction by NO2· were examined. Mixtures of ADN with urea and acetamide (AA) as amide compounds, and with MMAN and monoethanol amine nitrate (MEAN) as nitrate salts, were examined. Thermal analysis was conducted to investigate the properties of these mixtures, using differential scanning calorimetry (DSC). The calculation results shows that AA and MEAN are more reactive with ADN than urea and MMAN, which is supported by the DSC data. Hydrogen abstraction by NO2· is evidently an important condensed phase reaction in ADN mixtures, and substances having alkyl groups and longer carbon chains are more highly reactive.

  相似文献   

10.
This paper reports the synthesis, characterisation and thermolysis studies of a series of azotetrazolate salts, viz., ammonium/guanidinium/triaminoguanidinium [azotetrazolate]. TG-DTA and DSC results of these compounds exhibited their thermal stability up to 180°C. DSC indicated the highest heat release (2804 J g–1) for guanidinium azotetrazolate salt during exothermic decomposition. FTIR of the decomposition products of azotetrazolate salts showed bands at 3264 and 2358 cm–1 which may be attributed to gaseous species such as NH3 and HCN or NH2CN. The sensitivity data suggests low vulnerability of ammonium and guanidinium salts. In cyclic voltammetric studies all the salts showed similar response in reduction reactions. Triamino guanidinium azotetrazolate (TAGAZ) was incorporated into solid propellant formulations in order to establish the compatibility of this class of compounds. DSC results revealed that it does not have adverse effect on thermal stability of double base matrix. The burning rate data obtained indicated that TAGAZ acts as an efficient energetic additive in composite modified double base (CMDB) propellant formulations in high-pressure region.The authors are grateful to Dr. Haridwar Singh, Outstanding Scientist and Director, HEMRL for constant encouragement to carry out this work. Authors also thankful to Dr. R. S. Satpute, Dr. A. N. Nazare and Dr. C. N. Divekar for their assistance in propellant processing.  相似文献   

11.
The effects of various burning rate catalysts on thermal decomposition of cured glycidyl azide polymer (GAP)-ammonium perchlorate (AP) propellants have been studied by means of thermal analysis and a modified vacuum stability test (MVST). Four types of iron-containing catalysts examined in this paper are catocene, ferrocenecarboxaldehyde (FCA), ferrocene, and ferric oxide. Results of differential thermal analysis (DTA) and thermogravimetric analysis (TG) revealed that the catalysts play an important role in the decomposition of both AP and GAP. The peak decomposition temperature (T m) of DTA curves and onset decomposition temperature (T o) of TG patterns considerably shifted to a lower temperature as the concentration of catalysts increased in the propellants. The endothermic temperature of AP, however, is unaffected by the presence of burning rate catalysts in all cases. The activation energy of decomposition of the propellants in range of 80 to 120°C is determined, based on the MVST results.  相似文献   

12.
A new approach to improve the performance of composite propellants was developed in which reactive nanocomposites (RNCs) are used as replacements for aluminum powders in composite solid rocket propellants. The new materials are mechanically activated nanothermites comprising of nano‐powders of aluminum as the fuel as well as oxides of copper, iron, molybdenum, or nickel as the oxidizer. The obtained RNCs were characterized using X‐ray diffraction, scanning electron microscopy, and laser diffraction particle size analyzer. The obtained RNCs were used for preparation of modified composite solid rocket propellants (CSRPs). Burning rate, thermal decomposition behavior, heat of combustion, sensitivity, and mechanical properties of CSRPs were determined. The results showed increases in the combustion energy and the burning rate of the modified propellants were achieved, and that RNCs can be considered to be promising multi‐function additives for composite solid rocket propellants. In addition, the mechanical properties and sensitivities of the modified propellants are within the desired range.  相似文献   

13.
The thermal decomposition of several sulfonamides and potassium salts of sulfonamides was investigated. The analyses were performed using a derivatograph in an air atmosphere, sample sizes were from 50 to 200 mg and heating rate from 2.5 to 20 K min-1. It has been established, that the thermal destruction of studied compounds occurs via three stages with formation of potassium carbonate as a final product of the complete combustion of potassium salts of sulfonamides. The temperature ranges, in which the analyzed compounds undergo thermal transformations were established. For evaluation of the results the principal component analysis (PCA) was applied. By this method the influence of the specific functional groups on the thermal decomposition of sulfonamides and potassium salts of sulfonamides was determined. It has also been recognized, that better discrimination among the analyzed compounds is obtained for the data set of the DTA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Alkyl‐substituted ferrocene‐based burning rate catalysts exhibit high migration and volatility during curing process and prolonged storage of the composite solid propellants. To deal with the drawbacks twenty‐one dinuclear (ferrocenylmethyl)imidazolium compounds paired with polycyano anions, were synthesized and characterized by 1H NMR, 13C NMR, UV/Vis, elementary analysis, and both 2 and 11 were further characterized by single‐crystal X‐ray diffraction. The migration test revealed that the compounds have excellent anti‐migration ability. The cyclic‐voltammetry results suggested that they are quasi‐reversible or irreversible redox systems. The TG/DSC analyses showed that the compounds are highly thermal stable. Their effects on the thermal decomposition of ammonium perchlorate (AP) and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX) were additionally examined. The results showed that the new compounds have strong effects on the thermal decomposition of both AP and RDX during combustion. Both 13 and 21 are more excellent than catocene for increasing the released heats of AP and can be used as alternatives of catocene in the composite solid propellants.  相似文献   

15.
The thermal decomposition properties and the heat of combustion (ΔH) of samples with different ammonium perchlorate (AP)/double base propellant (DB) mass ratios under argon atmosphere were studied by the thermogravimetry–differential scanning calorimetry–mass spectrometry–Fourier transform infrared spectroscopy (TG–DSC–MS–FTIR) and automatic calorimeter method. The results show that decomposition process of AP/DB samples in negative and zero oxygen balance (OB) is different from that in positive OB. With the increasing of AP in the AP/DB samples, the decomposition of the samples becomes more and more severe. When the OB of the samples is positive, the phenomenon of deflagration or explosion could be observed in the decomposition process. The sample with OB = 0 has the greatest heat of combustion.  相似文献   

16.
High-energy density materials (HEDMs) are being investigated for use as propellants in rocket, air-breathing, and combined-cycle applications. These types of materials may be attractive alternatives to conventional propellants because of their high heat of combustion, density, and high strain energy. Because advanced propulsion systems may operate at very high pressure and temperature (>25 atm and temperatures exceeding 500 °C), the thermal decomposition of individual HEDMs is of interest to future fuel system designers. A laboratory-scale flow reactor was used to subject small amounts (approximately 1 ml) of deoxygenated HEDM to controlled conditions of temperature and residence-time-at-temperature at constant pressure (34 atm) in the liquid or supercritical phase. The reactor was 316 stainless steel HPLC tubing. Using an in-line analytical system, as well as off-line chromatographic analysis of products, the thermal stability of the parent material, as well as the thermal fragmentation products of each HEDM was measured. Some of the candidate materials tested (dimethyl-2-azidoethylamine (DAMEZ), quadricyclane, and bicyclopropylidene (BCP)) showed only marginal thermal stability with major decomposition occurring before 400 °C (3 s residence time). Other candidate materials (JP-10, RP-1, RG-1, RJ-6, and RJ-7) showed excellent thermal stability: little decomposition even at 600 °C. Results show the pyrolytic stability of candidate materials relative to each other, and provided insights to the mechanisms of thermal decomposition for specific fuel candidates.  相似文献   

17.
Ammonium dinitramide (ADN) is a promising new oxidizer for solid propellants because of its high oxygen balance and high energy content, and halogen-free combustion products. One of the characteristics needed for solid propellants is stability. Heat, light, and moisture are factors affecting stability during storage, manufacture, and use. For practical use of ADN as a solid propellant, clarification of the mechanism of decomposition by these factors is needed to be able to predict lifetime. This study focused on thermal decomposition of ADN. Exothermal behavior of ADN decomposition was measured by isothermal tests using high-sensitive calorimetry (TAM) and non-isothermal tests using differential scanning calorimetry (DSC). Based on these results, analysis of the decomposition kinetics was conducted. The activation energy determined by TAM tests was lower than that from DSC tests. Thus, the decomposition path in TAM tests was different from that in DSC tests. The amount of ADN decomposition predicted from TAM tests was closer to that found under real storage conditions than the amount of decomposition predicted from DSC tests. Non-isothermal tests may not be able to precisely predict the lifetime of materials with a decomposition mechanism that changes with temperature, such as ADN. The lifetime predicted from DSC results was much longer than that from TAM tests especially at low temperature. It is necessary to use isothermal tests to predict the long-term stability at low temperature.  相似文献   

18.
IntroductionCopper( ) salt of4- hydroxy- 3,5 - dinitropy-ridine( 4 HDNPCu) is an energetic material contain-ing energetic_ NO2 groups,which can be used asan energetic auxiliary catalyzer substituting the in-ertia copper salt to improve the catalysis of themain catalyzer( lead salt) in propellant[1] .Thermalbehavior is one of the most important aspects af-fecting its catalytic efficiency for propellant.How-ever,its kinetic parameters of thermal decomposi-tion and its application in RDX- co…  相似文献   

19.
Double-base propellants undergo chemical, physical and mechanical changes upon ageing, leading to changes in ballistic performance and presenting explosive hazards. This report studies the variation of chemical and mechanical properties of aged N,N′-dimethyl-N,N′-diphenylcarbamide (methyl centralite) stabilized propellants in order to simulate and evaluate the natural ageing throughout the artificial one. Therefore, a comparative study of stabilizer depletion, plasticizers content, heat of combustion and mechanical properties such as storage modulus, loss modulus and damping of naturally and artificially aged propellants has been carried out by the following techniques: high-performance liquid chromatography (HPLC), thermogravimetric analyzer (TG), calorimeter of combustion and dynamic mechanical analyzer (DMA), respectively. The results obtained show that all properties are closely connected. In addition, the determination of stabilizer depletion, plasticizers evaporation, decrease of heat of combustion and mechanical properties are very useful for a better understanding of the decomposition and ageing behaviour of propellants. The HPLC investigation of stabilizer has shown good stability of the propellants. The results obtained for DMA have shown that some considerable changes of the mechanical and viscoelastic properties of the propellants occurred during ageing. These results confirm the results obtained by TG for the reduction of the nitroglycerine amount and the decrease of the heat of combustion.  相似文献   

20.
The thermal decomposition of the ferric and nickel acetate salts has been followed. It was found that the heating rate affects the decomposition steps. For a heating rate of 1 K min–1 the product is either Fe2O3 or NiO. For a higher heating rate the suboxides are obtained and reoxidized again on further heating. The decomposition of the mixed salt is an overlap of the DTA for the separate salts but the decomposition reactions are shifted to lower temperatures.We would like to thank Prof. Dr. N. Afify, Phys. Dept., Fact. Science, Assiut University, for experimental assistance and valuable discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号