首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Galerkin method is used to solve the diffusion equation of the distribution function in configurational space for a multibead-rod model, and the dimensionless components of the extra stress tensor are then calculated by means of the expression of ensemble average. The material functions for steady-state shear flow and uniaxial flow and the mechanical properties of rigid-rodlike molecule suspensions in superposed flows are obtained numerically. The results indicate that it is promising to employ the multibead-rod models without the constitutive equation in numerical simulations of flows of suspensions. The project supported by the National Natural Science Fundation of China.  相似文献   

2.
定常流中聚合物分子的取向   总被引:2,自引:0,他引:2  
范西俊 《力学学报》1991,23(4):400-410
本文将求解纳维-司托克斯方程的有限元方法与分子模型(多球刚杆模型)相结合,从而恰当地模拟刚棒状聚合物分子稀溶液的流动。对于几种定常流动问题,求解了流场和多球刚杆模型的最可几取向,并用图显示了这些结果。这些结果说明了这种方法处理的合理性。  相似文献   

3.
哑铃式聚合物分子模型流变学数值研究   总被引:3,自引:1,他引:2  
范西俊 《力学进展》1990,20(1):11-23
本文介绍了求解哑铃式分子模型位形空间分布函数扩散方程的数值方法,以及用这种方法计算的若干分子模型的流变性质。在通常情况下,将这一方法与求解流动守恒方程的边界元法相结合,便有可能用一个得不到本构方程的分子模型去代替连续介质力学本构方程,来模拟聚合物流体的复杂流动。本文还讨论了这一方法某些令人感兴趣的特点。   相似文献   

4.
An analytical solution is obtained for steady flow of Quemada-type fluids in a circular tube driven by a constant pressure gradient. Expressions are derived for velocity distribution and for volumetric flow rate as a function of pressure gradient or wall shear stress.  相似文献   

5.
将流形方法应用于定常不可压缩粘性流动N-S方程的直接数值求解,建立基于Galerkin加权余量法的N-S方程数值流形格式,有限覆盖系统采用混合覆盖形式,即速度分量取1阶和压力取0阶多项式覆盖函数,非线性流形方程组采用直接线性化交替迭代方法和Nowton-Raphson迭代方法进行求解.将混合覆盖的四节点矩形流形单元用于阶梯流和方腔驱动流动的数值算例,以较少单元获得的数值解与经典数值解十分吻合.数值实验证明,流形方法是求解定常不可压缩粘性流动N-S方程有效的高精度数值方法.  相似文献   

6.
复杂边界条件下渗流场流线分布研究   总被引:15,自引:2,他引:15  
流线分布研究已受到油藏工程师们的普遍关注。本文从无限大油藏稳态渗流场基本解出发,结合边界元方法求解出复杂边界条件下稳态渗流场的势分布,以此为基础提出了流线场的生成办法,并给出了应用实例。本文方法的优点在于求解过程中将问题的维数降低了一维,减少了计算量;计算精度较高且具有一定的普遍应用性;适应于求解任意形状的包括定压、定流量或混合边界在内的组合边界问题。实例表明,利用本文方法产生的流线分布因能够较为直观地反映出油藏流体在注采井间的运动轨迹,为优化井网和注入方案提供了重要依据。  相似文献   

7.
An efficient finite element algorithm is presented to simulate the planar converging flow for the viscoelastic fluid of the Leonov model. The governing equation set, composed of the continuity, momentum and constitutive equations for the Leonov fluid flow, is conveniently decoupled and a two-stage cyclic iteration technique is employed to solve the velocity and elastic strain fields separately. Artificial viscosity terms are imposed on the momentum equations to relax the elastic force and data smoothing is performed on the iterative calculations for velocities to further stabilize the numerical computations. The calculated stresses agree qualitatively with the experimental measurements and other numerically simulated results available in the literature. Computations were successful to moderately high values of Deborah number of about 27·5.  相似文献   

8.
A new boundary element method is presented for steady incompressible flow at moderate and high Reynolds numbers. The whole domain is discretized into a number of eight-noded cells, for each of which the governing boundary integral equation is formulated exclusively in terms of velocities and tractions. The kernels used in this paper are the fundamental solutions of the linearized Navier–Stokes equations with artificial compressibility. Significant attention is given to the numerical evaluation of the integrals over quadratic boundary elements as well as over quadratic quadrilateral volume cells in order to ensure a high accuracy level at high Reynolds numbers. As an illustration, square driven cavity flows are considered for Reynolds numbers up to 1000. Numerical results demonstrate both the high convergence rate, even when using simple (direct) iterations, and the appropriate level of accuracy of the proposed method. Although the method yields a high level of accuracy in the primary vortex region, the secondary vortices are not properly resolved. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
IntroductionThefluiddynamicsofbloodcyclesystemplayanimportantroleinthepathogenesisofatherosclerosis.ThephysiologicalanatomyfoundthattheatherosclerosisappearsoftenatthebifurcationorcurvedflowareatoallkindsofRefs.[1 ,2 ] .Theshearstressvariesgreatlyinthoseareaandinfluencesthemacromoleculartransportacrossthebloodwall[3,4].Thus ,theinvestigationoftheflowandmacromoleculartransportinthesecomplexbloodvesselaandthecorrelationbetweenthemareinterestingtoresearchers.Intheseaspect,Liepschstudiedtheflowi…  相似文献   

10.
The structure and characteristics of nonlinear steady waves on the surface of horizontal shear flow of an ideal homogeneous incompressible fluid of finite depth with a linear velocity profile are studied using two-dimensional theory and the Euler approach. The wave motion is considered irrotational. A modification of the first Stokes method is proposed that allows algebraic calculations of terms of perturbation series. Nonlinear dispersion relations are obtained and analyzed for both upstream and downstream traveling waves. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 43–48, May–June, 2006.  相似文献   

11.
In this study, we examine the numerical simulation of transient viscoelastic flows with two moving free surfaces. A modified Galerkin finite element method is implemented to the two-dimensional non-steady motion of the fluid of the Oldroyd-B type. The fluid is initially placed between two parallel plates and bounded by two straight free boundaries. In this Lagrangian finite element method, the spatial mesh deforms in time along with the moving free boundaries. The unknown shape of the free surfaces is determined with the flow field u, v, τ, p by the deformable finite element method, combined with a predictor-corrector scheme in an uncoupled fashion. The moving free surfaces and fluid motion of both Newtonian and non-Newtonian flows are investigated. The results include the influence of surface tension, fluid inertia and elasticity.  相似文献   

12.
This paper presents a new neural network‐boundary integral approach for analysis of steady viscous fluid flows. Indirect radial basis function networks (IRBFNs) which perform better than element‐based methods for function interpolation, are introduced into the BEM scheme to represent the variations of velocity and traction along the boundary from the nodal values. In order to assess the effect of IRBFNs, the other features used in the present work remain the same as those used in the standard BEM. For example, Picard‐type scheme is utilized in the iterative procedure to deal with the non‐linear convective terms while the calculation of volume integrals and velocity gradients are based on the linear finite element‐based method. The proposed IRBFN‐BEM is verified on the driven cavity viscous flow problem and can achieve a moderate Reynolds number of 1400 using a relatively coarse uniform mesh. The results obtained such as the velocity profiles along the horizontal and vertical centrelines as well as the properties of the primary vortex are in very good agreement with the benchmark solution. Furthermore, the secondary vortices are also captured by the present method. Thus, it appears that an ability to represent the boundary solution accurately can significantly improve the overall solution accuracy of the BEM. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A new algorithm, which combines the spectral element method with elastic viscous splitting stress (EVSS) method, has been developed for viscoelastic fluid flows in a planar contraction channel. The system of spectral element approximations to the velocity, pressure, extra stress and the rate of deformation variables is solved by a preconditioned conjugate gradient method based on the Uzawa iteration procedure. The numerical approach is implemented on a planar four‐to‐one contraction channel for a fluid governed by an Oldroyd‐B constitutive equation. The behaviour of the Oldroyd‐B fluids in the contraction channel is investigated with various Weissenberg numbers. It is shown that numerical solutions obtained here agree well with experimental measurements and other numerical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
复杂边界非均质渗流场流线分布研究   总被引:2,自引:0,他引:2  
建立了考虑源(汇)影响的含有不渗透区域复杂边界条件下非均质油藏稳定渗流的数学模型。利用扰动边界元方法求解数学模型,获得了地层中任意一点的压力公式.在此基础上,提出了流线场的生成方法。绘制了考虑非均质性、复杂边界和不渗透区域影响的流线分布图,并分析了流线分布的特征。通过分析表明,渗流场的非均质性和不渗透区域的存在都对流线分布存在较大的影响。利用本文方法产生的流线分布图能够较为直观地反映出油藏流体在注采井间的运动轨迹,为优化井网和注入方案提供了重要依据。  相似文献   

15.
高阶谱元区域分解算法求解定常方腔驱动流   总被引:2,自引:0,他引:2  
主要利用Jacobian-free的Newton-Krylov方法求解定常不可压缩Navier-Stokes方程,将基于高阶谱元法的区域分解Stokes算法的非定常时间推进步作为Newton迭代的预处理,回避了传统Newton方法Jacobian矩阵的显式装配,节省了程序内存,同时降低了Newton迭代线性系统的条件数,且没有非线性对流项的隐式求解,大大加快了收敛速度。对有分析解的Kovasznay流动的计算结果表明,本高阶谱元法在空间上有指数收敛的谱精度,且对定常解的Newton迭代是二次收敛的。本文模拟了二维方腔顶盖一致速度驱动流,同基准解符合得很好,表明本文方法是准确可靠的。本文还考虑了Re=800时方腔顶盖正弦速度驱动流,除得到已知的一个稳定对称解和一对稳定非对称解外,还获得了一对新的不稳定的非对称解。  相似文献   

16.
This paper deals with the numerical simulation of fluid dynamics using the boundary–domain integral technique (BEM). The steady 2D diffusion–convection equations are discussed and applied to solve the plane Navier-Stokes equations. A vorticity–velocity formulation has been used. The numerical scheme was tested on the well-known ‘driven cavity’ problem. Results for Re = 1000 and 10,000 are compared with benchmark solutions. There are also results for Re = 15,000 but they have only qualitative value. The purpose was to show the stability and robustness of the method even when the grid is relatively coarse.  相似文献   

17.
Mould filling processes, in which a material flow front advances through a mould, are typical examples of moving boundary problems. The moving boundary is accompanied by a moving contact line at the mould walls causing, from a macroscopic modelling viewpoint, a stress singularity. In order to be able to simulate such processes, the moving boundary and moving contact line problem must be overcome. A numerical model for both two- and three-dimensional mould filling simulations has been developed. It employs a pseudo-concentration method in order to avoid elaborate three-dimensional remeshing, and has been implemented in a finite element program. The moving contact line problem has been overcome by employing a Robin boundary condition at the mould walls, which can be turned into a Dirichlet (no-slip) or a Neumann (free-slip) boundary condition depending on the local pseudo-concentration. Simulation results for two-dimensional test cases demonstrate the model's ability to deal with flow phenomena such as fountain flow and flow in bifurcations. The method is by no means limited to two-dimensional flows, as is shown by a pilot simulation for a simple three-dimensional mould. The reverse problem of mould filling is the displacement of a viscous fluid in a tube by a less viscous fluid, which has had considerable attention since the 1960's. Simulation results for this problem are in good agreement with results from the literature. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
A standard Galerkin finite element penalty function method is used to approximate the solution of the three-dimensional Navier–Stokes equations for steady incompressible Newtonian entrance flow in a 90° curved tube (curvature ratio δ = 1/6) for a triple of Dean numbers (κ = 41, 122 and 204). The computational results for the intermediate Dean number (κ = 122) are compared with the results of laser–Doppler velocity measurements in an equivalent experimental model. For both the axial and secondary velocity components, fair agreement between the computational and experimental results is found.  相似文献   

19.
The steady planar sink flow through wedges of angle π/α with α≥1/2 of the upper convected Maxwell (UCM) and Oldroyd-B fluids is considered. The local asymptotic structure near the wedge apex is shown to comprise an outer core flow region together with thin elastic boundary layers at the wedge walls. A class of similarity solutions is described for the outer core flow in which the streamlines are straight lines giving stress and velocity singularities of O(r−2) and O(r−1), respectively, where r1 is the distance from the wedge apex. These solutions are matched to wall boundary layer equations which recover viscometric behaviour and are subsequently also solved using a similarity solution. The boundary layers are shown to be of thickness O(r2), their size being independent of the wedge angle. The parametric solution of this structure is determined numerically in terms of the volume flux Q and the pressure coefficient p0, both of which are assumed furnished by the flow away from the wedge apex in the r=O(1) region. The solutions as described are sufficiently general to accommodate a wide variety of external flows from the far-field r=O(1) region. Recirculating regions are implicitly assumed to be absent.  相似文献   

20.
动压载荷下受限纳米水膜流动特性的分子动力学仿真研究   总被引:1,自引:1,他引:0  
陈入领  王瑶  雷红 《摩擦学学报》2016,36(6):673-678
利用分子动力学模拟方法探究了外加载荷作用下纳米尺度受限水膜的流动特性.仿真结果表明:受限空间内的水膜随着载荷的增加,其出现分层现象和黏度增加,当黏度超过一个临界值后,在分层和黏度增加共同作用下,水膜的流动状态将由层流和湍流的混合状态过渡到单一的层流状态.同时,随着受限空间壁面的切向运动,受限水膜均会出现边界滑移现象,且随着载荷的增加,滑移现象越发显著.但当水膜单一层流状态形成后,受限空间壁面的滑移速度,对水膜的边界滑移长度影响并不显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号