首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复合材料层合梁的屈曲   总被引:1,自引:0,他引:1  
本文在铁摩辛柯梁理论基础上,利用迭合刚度方法及Hamilton原理建立了层合梁屈曲问题控制方程,并用此控制方程求解了在具体边界条件下层合梁的屈曲问题,得出了无论在什么边界条件下层合梁的最小屈曲载荷不会大于等效剪切刚度系数C的结论.  相似文献   

2.
Shear deformable finite beam elements for composite box beams   总被引:3,自引:0,他引:3  
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress–strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.  相似文献   

3.
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams.  相似文献   

4.
含初缺陷裂纹损伤梁的冲击动力屈曲   总被引:1,自引:0,他引:1  
由Hamilton原理导出考虑初始缺陷及横向剪切变形时裂纹梁的动力屈曲控制方程;应用断裂力学中常用的线弹簧模型将裂纹引入到屈曲控制方程中;基于B-R动力屈曲判断准则,采用数值方法求解了受轴向冲击载荷作用时裂纹梁的动力屈曲;对比讨论了不同冲击速度、初始几何缺陷大小以及分布形式等因素对梁冲击动力屈曲的影响。  相似文献   

5.
An investigation of the mechanics of bending and buckling is carried out for a class of nonlinear fiber composite rods composed of embedded unidirectional fibers parallel to the rod axis. The specific class of composite considered is one in which the fibers interact with the matrix through a nonlinear Needleman-type cohesive zone [Needleman, A., 1987. A continuum model for void nucleation by inclusion debonding. ASME J. Appl. Mech. 54, 525-531; Needleman, A., 1992. Micromechanical modelling of interfacial decohesion. Ultramicroscopy 40, 203-214]. The primary decohesive mechanism active in bending and buckling of these composite rods is shear slip along the fiber-matrix interfaces allowing the use of a previously developed constitutive relation for antiplane shear response [Levy, A.J., 2000b. The fiber composite with nonlinear interface—part II: antiplane shear. ASME J. Appl. Mech. 67, 733-739]. The formulation requires the specification of a potential interface force-slip law that is assumed to permit interface failure in shear.Four cases of the bending and shearing of beams (concentrated or uniform load on a cantilever or a simply supported beam) are analyzed, each of which exhibits qualitatively distinct response. For certain values of interface parameters, the beam deflection or its gradient at a fixed location can change discontinuously with load. Furthermore, for interface parameter values within a certain range, singular surfaces will exist in uniformly loaded beams where there is a non-uniform distribution of shear stress along the beam length. These singular surfaces divide the beam into regions of maximal and minimal fiber slip and propagate with a rate that varies inversely as the square of the applied load. For other parameter values, singular surfaces will not exist and fiber slip will be diffuse.For the class of nonlinear composite considered, bifurcation and imperfection buckling of pinned-pinned columns is analyzed. For bifurcation buckling, a nonlinear eigenvalue problem is derived and the solution is obtained by Galerkin's method. It is demonstrated that critical loads are influenced by the initial slope, and hence the linear portion, of the interface force-slip relation but the post-buckling response, which in some sense resembles that of plastic buckling, is affected by the entire interface constitutive relation. Imperfection buckling is analyzed in a similar manner by assuming a slight initial curvature of the rod. Sensitivity of the response to imperfection magnitude is discussed as well.  相似文献   

6.
This article describes a shooting method for computing three-dimensional equilibria of pre-curved nonlinear beams with axial and shear flexibility using the intrinsic beam formulation. For distributed and concentrated follower loads acting on a cantilevered beam, the method amounts to a direct solution approach requiring only a single shot (zero iterations) to compute the equilibria. This is possible since the system equations are defined in a local coordinate system that rotates and translates with the beam, akin to the follower loads themselves. A general procedure employing nonconservative follower loads, which invokes the Picard–Lindelöf theorem on uniqueness and existence of solutions, is also introduced for finding all solutions for three-dimensional pre-curved beam problems with conservative loading. This is particularly useful in beam buckling problems where multiple stable and unstable solutions exist. Three-dimensional equilibrium solutions are generated for many loading cases and boundary conditions, including three-dimensional helical beams, and are compared to similar solutions where available in the literature. Excellent agreement is documented in all comparison cases. For buckling examples, the stability of the computed solutions is assessed using a dynamic finite element code based on the same intrinsic beam equations. Due to the ability to avoid iteration, the presented approach may find application in model-based control for practical three-dimensional problems such as the control of manipulators utilized in endoscopic surgeries and the control of spacecraft with robotic arms and long cables.  相似文献   

7.
The relationship between the critical buckling loads of functionally graded material(FGM) Levinson beams(LBs) and those of the corresponding homogeneous Euler-Bernoulli beams(HEBBs) is investigated. Properties of the beam are assumed to vary continuously in the depth direction. The governing equations of the FGM beam are derived based on the Levinson beam theory, in which a quadratic variation of the transverse shear strain through the depth is included.By eliminating the axial displacement as well as the rotational angle in the governing equations,an ordinary differential equation in terms of the deflection of the FGM LBs is derived, the form of which is the same as that of HEBBs except for the definition of the load parameter. By solving the eigenvalue problem of ordinary differential equations under different boundary conditions clamped(C), simply-supported(S), roller(R) and free(F) edges combined, a uniform analytical formulation of buckling loads of FGM LBs with S-S, C-C, C-F, C-R and S-R edges is presented for those of HEBBs with the same boundary conditions. For the C-S beam the above-mentioned equation does not hold. Instead, a transcendental equation is derived to find the critical buckling load for the FGM LB which is similar to that for HEBB with the same ends. The significance of this work lies in that the solution of the critical buckling load of a FGM LB can be reduced to that of the HEBB and calculation of three constants whose values only depend upon the throughthe-depth gradient of the material properties and the geometry of the beam. So, a homogeneous and classical expression for the buckling solution of FGM LBs is accomplished.  相似文献   

8.
Li Jun  Hua Hongxing 《Meccanica》2011,46(6):1299-1317
The dynamic stiffness matrix method is introduced to solve exactly the free vibration and buckling problems of axially loaded laminated composite beams with arbitrary lay-ups. The Poisson effect, axial force, extensional deformation, shear deformation and rotary inertia are included in the mathematical formulation. The exact dynamic stiffness matrix is derived from the analytical solutions of the governing differential equations of the composite beams based on third-order shear deformation beam theory. The application of the present method is illustrated by two numerical examples, in which the effects of axial force and boundary condition on the natural frequencies, mode shapes and buckling loads are examined. Comparison of the current results to the existing solutions in the literature demonstrates the accuracy and effectiveness of the present method.  相似文献   

9.
基于Bernoulli-Euler梁理论,引入物理中面解耦了复合材料结构的面内变形与横向弯曲特性,研究了梯度多孔材料矩形截面梁在热载荷作用下的弯曲及过屈曲力学行为.假设沿梁厚度方向材料的性质是连续变化的,利用能量法推导了矩形截面梁的控制微分方程和边界条件,并用打靶法对无量纲化的控制方程进行数值求解.利用计算得到的结果分析了材料的性质、热载荷、边界条件对矩形截面梁非线性力学行为的影响.结果表明,对称材料模型下,固支梁与简支梁均显示出了典型的分支屈曲行为特征,而其临界屈曲热载荷值均会随着孔隙率系数的增加而单调增加.非对称材料模型下,固支梁仍显示出分支屈曲行为特征,但其临界屈曲热载荷不再随着孔隙率系数的变化而单调变化;而对于两端简支梁,发生了弯曲变形,弯曲挠度随载荷的增大而增大.  相似文献   

10.
The inconsistences of the higher-order shear resultant expressed in terms of displacement(s) and the complete boundary value problems of structures modeled by the nonlocal strain gradient theory have not been well addressed. This paper develops a size-dependent Timoshenko beam model that considers both the nonlocal effect and strain gradient effect. The variationally consistent boundary conditions corresponding to the equations of motion of Timoshenko beams are reformulated with the aid of the weighted residual method. The complete boundary value problems of nonlocal strain gradient Timoshenko beams undergoing buckling are solved in closed forms. All the possible higher-order boundary conditions induced by the strain gradient are selectively suggested based on the fact that the buckling loads increase with the increasing aspect ratios of beams from the conventional mechanics point of view. Then, motivated by the expression for beams with simply-supported(SS) boundary conditions, some semiempirical formulae are obtained by curve fitting procedures.  相似文献   

11.
In this work we show that a structure consisting of a network of bending beams can exhibit a negative Poisson’s ratio. We have shown that the negative Poisson’s ratio behaviour is driven by the (bcc analogous) type III beams, the type II (fcc like) beams result in a structure with a Poisson’s ratio of around zero and type I (simple cubic configuration) beams result in a Poisson’s ratio of nearly +1. The tensile and shear strengths of the type III beams are augmented by addition of type II and type III beams. By tailoring the relative stiffness of the component beams within the structure it is possible to design an auxetic truss structure with specific Poisson’s ratio, tensile and shear moduli.This validates the hypothesis that crystal structures can provide inspiration for macro structures with tailored mechanical properties where the mechanism for negative Poisson’s ratio (auxetic) behaviour at the atomic scale in cubic crystals is replicated by bending beams.  相似文献   

12.
This paper deals with the buckling behavior of two-layer shear-deformable beams with partial interaction. The Timoshenko kinematic hypotheses are considered for both layers and the shear connection (no uplift is permitted) is represented by a continuous relationship between the interface shear flow and the corresponding slip. A set of differential equations is obtained from a general 3D bifurcation analysis, using the above assumptions. Original closed-form analytical solutions of the buckling load and mode of the composite beam under axial compression are derived for various boundary conditions. The new expressions of the critical loads are shown to be consistent with the ones corresponding to the Euler–Bernoulli beam theory, when transverse shear stiffnesses go to infinity. The proposed analytical formulae are validated using 2D finite element computations. Parametric analyses are performed, especially including the limiting cases of perfect bond and no bond. The effect of shear flexibility is particularly emphasized.  相似文献   

13.
THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS   总被引:12,自引:0,他引:12  
Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.  相似文献   

14.
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass.  相似文献   

15.
A new nonlinear planar beam formulation with stretch and shear deformations is developed in this work to study equilibria of a beam under arbitrary end forces and moments. The slope angle and stretch strain of the centroid line, and shear strain of cross-sections, are chosen as dependent variables in this formulation, and end forces and moments can be either prescribed or resultant forces and moments due to constraints. Static equations of equilibria are derived from the principle of virtual work, which consist of one second-order ordinary differential equation and two algebraic equations. These equations are discretized using the finite difference method, and equilibria of the beam can be accurately calculated. For practical, geometrically nonlinear beam problems, stretch and shear strains are usually small, and a good approximate solution of the equations can be derived from the solution of the corresponding Euler–Bernoulli beam problem. The bending deformation of the beam is the only important one in a slender beam, and stretch and shear strains can be derived from it, which give a theoretical validation of the accuracy and applicability of the nonlinear Euler–Bernoulli beam formulation. Relations between end forces and moments and relative displacements of two ends of the beam can be easily calculated. This formulation is powerful in the study of buckling of beams with various boundary conditions under compression, and can be used to calculate post-buckling equilibria of beams. Higher-order buckling modes of a long slender beam that have complex configurations are also studied using this formulation.  相似文献   

16.
伪Stroh型公式能够将多场耦合材料的控制方程转化为线性特征系统来求解,从而获得多层结构简支边界条件的精确解.本文利用伪Stroh型公式,研究一维六方准晶层合简支梁的自由振动和屈曲问题,通过传递矩阵法,获得准晶层合梁自由振动固有频率与临界屈曲载荷的精确解.通过与已有梁的剪切变形理论结果比较,验证了本文伪Stroh型公式的正确性和有效性.通过数值算例,分析由两种不同准晶材料组成的三明治层合梁的叠层方式、高跨比、层厚比及层数对梁的固有频率、临界屈曲载荷及其模态的影响规律.结果表明,叠层顺序和梁的高跨比、层厚比对准晶层合梁的自由振动固有频率和临界屈曲载荷有很大影响,可通过调整梁的几何尺寸和叠层顺序得到准晶层合梁的最佳固有频率和临界屈曲载荷.本文给出的精确解可为工程上研究准晶梁的各种数值解法和实验方法提供理论参考.  相似文献   

17.
Dynamic stability behavior of the shear-flexible composite beams subjected to the nonconservative force is intensively investigated based on the finite element model using the Hermitian beam elements. For this, a formal engineering approach of the mechanics of the laminated composite beam is presented based on kinematic assumptions consistent with the Timoshenko beam theory, and the shear stiffness of the thin-walled composite beam is explicitly derived from the energy equivalence. An extended Hamilton’s principle is employed to evaluate the mass-, elastic stiffness-, geometric stiffness-, damping-, and load correction stiffness matrices. Evaluation procedures for the critical values of divergence and flutter loads of the nonconservative system with and without damping effects are then briefly introduced. In order to verify the validity and the accuracy of this study, the divergence and flutter loads are presented and compared with the results from other references, and the influence of various parameters on the divergence and flutter behavior of the laminated composite beams is newly addressed: (1) variation of the divergence and flutter loads with or without the effects of shear deformation and rotary inertia with respect to the nonconservativeness parameter and the fiber angle change, (2) influence of the internal and external damping on flutter loads whether to consider the shear deformation or not.  相似文献   

18.
热荷载作用下Timoshenko功能梯度夹层梁的静态响应   总被引:1,自引:0,他引:1  
在精确考虑轴线伸长和一阶横向剪切变形的基础上建立了Timoshenko功能梯度夹层梁在热载荷作用下的几何非线性控制方程.采用打靶法数值求解所得强非线性边值问题,获得了两端固支功能梯度夹层梁在横向非均匀升温作用下的静态热过屈曲和热弯曲变形数值解.分析了功能梯度材料参数变化、不同表层厚度和升温参数对夹层梁弯曲变形、拉-弯耦...  相似文献   

19.
Auxetic materials possess negative Poisson's ratios. As such, they can be applied in situations where traditional materials perform poorly or cannot perform. We investigate the plastic failure of a 3D auxetic strut lattice under uniaxial and transverse loads in order to complement ongoing research in miniaturized strut-based sandwich cores. The chosen lattice is also representative of an auxetic foam. Plastic failure models derived with respect to two physical parameters (packing parameter and relative density) which control the negative Poisson's ratio compare well with numerical data. Microscopic failure modes differ depending on the loading state: shear failure is due to global plastic yielding while plastic localization occurs under uniaxial loads. This observation suggests among others that it is advisable to use auxetic cores when structural softness under normal loads and hardness under transverse loads are both critical design conditions.  相似文献   

20.
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号