首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Let A 1,…,A N be complex self-adjoint matrices and let ρ be a density matrix. The Robertson uncertainty principle
gives a bound for the quantum generalized covariance in terms of the commutators [A h ,A j ]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1. Let f be an arbitrary normalized symmetric operator monotone function and let 〈⋅,⋅〉 ρ,f be the associated quantum Fisher information. Based on previous results of several authors, we propose here as a conjecture the inequality
whose validity would give a non-trivial bound for any N∈ℕ using the commutators i[ρ,A h ].  相似文献   

2.
It is well known that the Cramér–Rao inequality places a lower bound for quantum Fisher information in terms of the variance of any quantum measurement. We establish an upper bound for quantum Fisher information of a parameterized family of density operators in terms of the variance of the generator. These two bounds together yield a generalization of the Heisenberg uncertainty relations from statistical estimation perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号