首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
For the first time, α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages inhibitory assays were used to explore the antidiabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed). Two polyphenols (phenolic acids) with strong antihyperglycaemic activity were isolated from the methanol extract of whole jackfruit flour (MJ) using activity-guided repeated fractionation on a silica gel column chromatography. The bioactive compounds isolated were identified as 3-(3,4-Dihydroxyphenyl)-2-propenoic acid (caffeic acid: CA) and 4-Hydroxy-3,5-dimethoxybenzoic acid (syringic acid: SA) after various physicochemical and spectroscopic investigations. CA (IC50: 8.0 and 26.90 µg/mL) and SA (IC50: 7.5 and 25.25 µg/mL) were identified to inhibit α-glucosidase and α-amylase in a competitive manner with low Ki values. In vitro glycation experiments further revealed that MJ and its components inhibited each stage of protein glycation as well as the generation of intermediate chemicals. Furthermore, CA (IC50: 3.10) and SA (IC50: 3.0 µg/mL) inhibited aldose reductase effectively in a non-competitive manner, respectively. The binding affinity of these substances towards the enzymes examined has been proposed by molecular docking and molecular dynamics simulation studies, which may explain their inhibitory activities. The found potential of MJ in antihyperglycaemic activity via inhibition of α-glucosidase and in antidiabetic action via inhibition of the polyol pathway and protein glycation is more likely to be related to the presence of the phenolic compounds, according to our findings.  相似文献   

2.
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.  相似文献   

3.
Herein, the extraction of bioactive compounds from umbu fruit peel was optimized using thermal-assisted solid–liquid extraction. In parallel, antioxidant, antimicrobial, and inhibitory effects against α-amylase of optimized extract were also evaluated. The combination of operational conditions including the temperature (32–74 °C), ethanol concentration (13–97%), and solid/liquid ratio (1:10–1:60; w/v) was employed using a rotational central composite design for optimization. The extracts were evaluated for total phenolic compounds (TPC), total flavonoid compounds (TFC) and antioxidant capacity by ABTS•+, DPPH and FRAP assays. The bioactive profile of the optimized extract was obtained by ultra-performance liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry in electrospray ionization in both negative and positive modes. The statistically evaluated results showed that the optimal operational conditions for the recovery of bioactive compounds from umbu fruit peel included 74 °C, 37% ethanol, and a solid–liquid ratio of 1:38. Under these conditions, the obtained values were 1985 mg GAE/100 g, 1364 mg RE/100 g, 122 µmol TE/g, 174 µmol/TE g and 468 µmol Fe2+/g for TPC, TFC, ABTS•+, DPPH, and FRAP assays, respectively. In addition, the optimized extract was effective against Gram-positive and Gram-negative bacteria (MBC ranged from 0.060 to 0.24 mg GAE/mL), as well as it was effective to inhibit α-amylase (IC50 value of 0.076 mg GAE/mL). The optimized extract showed to be mainly constituted by phenolic acids and flavonoids.  相似文献   

4.
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.  相似文献   

5.
Steroid 5α-reductase plays a crucial role in catalyzing the conversion of testosterone to dihydrotestosterone, which is involved in many androgen-dependent disorders. Leaf-hexane extract from Tectona grandis L.f. has shown promise as a 5α-reductase inhibitor. The objectives of this current study were to isolate and identify 5α-reductase inhibitors from T. grandis leaves and to use them as the bioactive markers for standardization of the extract. Three terpenoid compounds, (+)-eperua-8,13-dien-15-oic acid (1), (+)-eperua-7,13-dien-15-oic acid (2), and lupeol (3), were isolated and evaluated for 5α-reductase inhibitory activity. Compounds 1 and 2 exhibited potent 5α-reductase inhibitory activity, while 3 showed weak inhibitory activity. An HPLC method for the quantitative determination of the two potent inhibitors (1 and 2), applicable for quality control of T. grandis leaf extracts, was also developed. The ethanolic extract showed a significantly higher content of 1 and 2 than found in the hexane extract, suggesting that ethanol is a preferable extraction solvent. This study is the first reported isolation of 5α-reductase inhibitors (1 and 2) from T. grandis leaves. The extraction and quality control methods that are safe and useful for further development of T. grandis leaf extract as an active ingredient for hair loss treatment products are also reported.  相似文献   

6.
Four new phenanthrene derivatives, gastrobellinols A-D (1–4), were isolated from the methanolic extract of Gastrochilus bellinus (Rchb.f.) Kuntze, along with eleven known phenolic compounds including agrostophyllin (5), agrostophyllidin (6), coniferyl aldehyde (7), 4-hydroxybenzaldehyde (8), agrostophyllone (9), gigantol (10), 4-(methoxylmethyl)phenol (11), syringaldehyde (12), 1-(4′-hydroxybenzyl)-imbricartin (13), 6-methoxycoelonin (14), and imbricatin (15). Their structures were determined by spectroscopic methods. Each isolate was evaluated for α-glucosidase inhibitory activity. Compounds 1, 2, 3, 7, 9, 13, and 15 showed higher activity than the drug acarbose. Gastrobellinol C (3) exhibited the strongest α-glucosidase inhibition with an IC50 value of 45.92 μM. A kinetic study of 3 showed competitive inhibition on the α-glucosidase enzyme. This is the first report on the phytochemical constituents and α-glucosidase inhibitory activity of G. bellinus.  相似文献   

7.
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.  相似文献   

8.
Digestive enzymes such α-amylase (AA), α-glucosidase (AG) and pancreatic lipase (PL), play an important role in the metabolism of carbohydrates and lipids, being attractive therapeutic targets for the treatment of type 2 diabetes and obesity. Garcinia mangostana is an interesting species because there have been identified xanthones with the potential to inhibit these enzymes. In this study, the multitarget inhibitory potential of xanthones from G. mangostana against AA, AG and PL was assessed. The methodology included the isolation and identification of bioactive xanthones, the synthesis of some derivatives and a molecular docking study. The chemical study allowed the isolation of five xanthones (1–5). Six derivatives (6–11) were synthesized from the major compound, highlighting the proposal of a new solvent-free methodology with microwave irradiation for obtaining aromatic compounds with tetrahydropyran cycle. Compounds with multitarget activity correspond to 2, 4, 5, 6 and 9, highlighting 6 with IC50 values of 33.3 µM on AA, 69.2 µM on AG and 164.4 µM on PL. Enzymatic kinetics and molecular docking studies showed that the bioactive xanthones are mainly competitive inhibitors on AA, mixed inhibitors on AG and non-competitive inhibitors on PL. The molecular coupling study established that the presence of methoxy, hydroxyl and carbonyl groups are important in the activity and interaction of polyfunctional xanthones, highlighting their importance depending on the mode of inhibition.  相似文献   

9.
Beta glucan (β-glucan) has promising bioactive properties. Consequently, the use of β-glucan as a food additive is favored with the dual-purpose potential of increasing the fiber content of food products and enhancing their health properties. Our aim was to evaluate the biological activity of β-glucan (antimicrobial, antitoxic, immunostimulatory, and anticancer) extracted from Saccharomyces cerevisiae using a modified acid-base extraction method. The results demonstrated that a modified acid-base extraction method gives a higher biological efficacy of β-glucan than in the water extraction method. Using 0.5 mg dry weight of acid-base extracted β-glucan (AB extracted) not only succeeded in removing 100% of aflatoxins, but also had a promising antimicrobial activity against multidrug-resistant bacteria, fungi, and yeast, with minimum inhibitory concentrations (MIC) of 0.39 and 0.19 mg/mL in the case of resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. In addition, AB extract exhibited a positive immunomodulatory effect, mediated through the high induction of TNFα, IL-6, IFN-γ, and IL-2. Moreover, AB extract showed a greater anticancer effect against A549, MDA-MB-232, and HepG-2 cells compared to WI-38 cells, at high concentrations. By studying the cell death mechanism using flow-cytometry, AB extract was shown to induce apoptotic cell death at higher concentrations, as in the case of MDA-MB-231 and HePG-2 cells. In conclusion, the use of a modified AB for β-glucan from Saccharomyces cerevisiae exerted a promising antimicrobial, immunomodulatory efficacy, and anti-cancer potential. Future research should focus on evaluating β-glucan in various biological systems and elucidating the underlying mechanism of action.  相似文献   

10.
This study is aimed to evaluate the chemical compositions and biological activities of quinoa, a novel and excellent food crop. Quinoa extract and its fractions were prepared by ethanol extraction and liquid-liquid extraction, including ethanol crude extract, and petroleum ether, chloroform, ethyl acetate (EAF), and n-butanol and water fractions. The total phenolic and flavonoid contents, antioxidant activities, α-glucosidase and acetylcholinesterase inhibitory abilities of the extract and fractions were further determined. Based on these foundations, the chemical composition of the EAF fraction exhibiting the strongest functional activity was analyzed by ultra-performance liquid chromatography-mass spectrometry. The results showed the EAF fraction had the highest phenolic and flavonoid contents, and the highest antioxidant activities, as well as the strongest α-glucosidase and acetylcholinesterase inhibitory abilities, which is even better than the positive control. The phytochemical composition of the EAF fraction indicated that 661 and 243 metabolites were identified in positive and negative ion modes, which were classified into superclass, class and subclass levels, respectively. Phenolic acids and flavonoids were the major bioactive compounds in the EAF fraction. This study found that quinoa, especially its ethyl acetate fraction, had the potential for the development of natural antioxidants, acetylcholinesterase inhibitors, and hypoglycemic agents.  相似文献   

11.
The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified—three and two in NIM and PIM, respectively—as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds—dihydrocatalpol and leucosceptoside A—from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus.  相似文献   

12.
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.  相似文献   

13.
Integrin α4β1 belongs to the leukocyte integrin family and represents a therapeutic target of relevant interest given its primary role in mediating inflammation, autoimmune pathologies and cancer-related diseases. The focus of the present work is the design, synthesis and characterization of new peptidomimetic compounds that are potentially able to recognize α4β1 integrin and interfere with its function. To this aim, a collection of seven new cyclic peptidomimetics possessing both a 4-aminoproline (Amp) core scaffold grafted onto key α4β1-recognizing sequences and the (2-methylphenyl)ureido-phenylacetyl (MPUPA) appendage, was designed, with the support of molecular modeling studies. The new compounds were synthesized through SPPS procedures followed by in-solution cyclization maneuvers. The biological evaluation of the new cyclic ligands in cell adhesion assays on Jurkat cells revealed promising submicromolar agonist activity in one compound, namely, the c[Amp(MPUPA)Val-Asp-Leu] cyclopeptide. Further investigations will be necessary to complete the characterization of this class of compounds.  相似文献   

14.
Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and β-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and β-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and β-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and β-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and β-amyrin. Furthermore, this was the first study indicating that α-amyrin and β-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.  相似文献   

15.
α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a–m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a–m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.  相似文献   

16.
17.
In this work, a new strain of Bacillus amyloliquefaciens SY07 isolated from a traditional fermented soybean food was reported to possess remarkable α-glucosidase inhibitor-producing ability. Different culture media were applied for the proliferation of B. amyloliquefaciens SY07, and it was found that fermented okara broth presented the highest α-glucosidase inhibitory activity, while Luria-Bertani medium showed a negative effect. The extract from fermented okara broth acted in a dose-dependent manner to inhibit α-glucosidase activity, with an IC50 value of 0.454 mg/mL, and main inhibitors in the fermentation extract presented a reversible, uncompetitive pattern according to Lineweaver–Burk plots. Moreover, 1-deoxynojirimycin, a recognized α-glucosidase inhibitor, was found in the extract. Results indicated that B. amyloliquefaciens SY07 could utilize okara, a by-product from the soy processing industry, to generate α-glucosidase inhibitors effectively, and be regarded as a novel excellent microbial candidate for safe, economical production of potential functional foods or ingredients with hypoglycemic effect.  相似文献   

18.
Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause.  相似文献   

19.
Three α,α-difluorophosphonate derivatives of fosmidomycin were synthesized from diethyl 1,1-difluorobut-3-enylphosphonate and were evaluated on Escherichia coli. Two of them are among the best 1-deoxy-d-xylulose 5-phosphate reductoisomerase inhibitors, with IC50 in the nM range, much better than fosmidomycin, the reference compound. They also showed an enhanced antimicrobial activity against E. coli on Petri dishes in comparison with the corresponding phosphates and the non-fluorinated phosphonate.  相似文献   

20.
The present study investigated the antidiabetic properties of the extracts and fractions from leaves and stem bark of M. glabra based on dipeptidyl peptidase-4 (DPP-4) and α-Amylase inhibitory activity assays. The chloroform extract of the leaves was found to be most active towards inhibition of DPP-4 and α-Amylase with IC50 of 169.40 μg/mL and 303.64 μg/mL, respectively. Bioassay-guided fractionation of the leaves’ chloroform extract revealed fraction 4 (CF4) as the most active fraction (DPP-4 IC50: 128.35 μg/mL; α-Amylase IC50: 170.19 μg/mL). LC-MS/MS investigation of CF4 led to the identification of trans-decursidinol (1), swermirin (2), methyl 3,4,5-trimethoxycinnamate (3), renifolin (4), 4′,5,6,7-tetramethoxy-flavone (5), isorhamnetin (6), quercetagetin-3,4′-dimethyl ether (7), 5,3′,4′-trihydroxy-6,7-dimethoxy-flavone (8), and 2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one (9) as the major components. The computational study suggested that (8) and (7) were the most potent DPP-4 and α-Amylase inhibitors based on their lower binding affinities and extensive interactions with critical amino acid residues of the respective enzymes. The binding affinity of (8) with DPP-4 (−8.1 kcal/mol) was comparable to that of sitagliptin (−8.6 kcal/mol) while the binding affinity of (7) with α-Amylase (−8.6 kcal/mol) was better than acarbose (−6.9 kcal/mol). These findings highlight the phytochemical profile and potential antidiabetic compounds from M. glabra that may work as an alternative treatment for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号