首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

最大最小原理在边坡稳定性分析中的应用,不仅可以检验所建模型的准确性,还可以进一步获得改进计算模型的相关条件。本文利用三维简化Sarma法,分析了滑面剪切力方向采用不同的分布形式引起的稳定系数的变化,计算结果表明,不管采用何种分布形式,当它发生变化时,对应的稳定系数总是存在一个极大值,这就证明了边坡稳定性最大原理在三维边坡稳定分析中的适用性; 同时,本文还在一种严格的二维临界滑面搜索算法的基础上,建立了三维临界滑面搜索的算法,利用ZhangXing算例详细分析了目标函数中各变量对稳定系数的影响,结果表明,二维上寻找临界滑面是切实可行的,这也证明最小原理在二维边坡稳定分析中是满足的,三维上则由于三维极限平衡法未考虑三维边坡的边界条件,导致基于三维极限平衡法的三维临界滑面理论上不存在,三维边坡稳定分析结果与最小原理的要求有一定的差异。  相似文献   

2.
《Comptes Rendus Mecanique》2019,347(4):318-331
In this essay we explore analogies between macroscopic patterns, which result from a sequence of phase transitions/instabilities starting from a homogeneous state, and similar phenomena in cosmology, where a sequence of phase transitions in the early universe is believed to have separated the fundamental forces from each other, and also shaped the structure and distribution of matter in the universe. We discuss three distinct aspects of this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an energy density that accounts for phenomena that are currently attributed to dark matter; (iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of quantum phenomena including inflation, entanglement and dark energy.  相似文献   

3.
为了提高水库设计的自动化水平,实现模型的三维可视化,本文研究了三维地形的建模方法及其在水库设计中的应用。采用了地性特征点和地性线参与三维建模的方法,提高了数字高程模型DEM的地形逼真度。在此基础上通过一种综合了水平线和覆盖消隐算法的合成消隐算法实现了彻底的消隐以及图像的快速生成。通过三维水库模型,不仅可以得到水库的容量、库水的淹没边界和淹没面积,而且还可以生成地形剖面图。如果地形剖面图与地质图、水文图、构造图等进行叠加,可以形成综合剖面图。文章最后采用三维可视化方法模拟了某水库的部分设计工作,结果表明,通过水库的三维地形模型可以简单直观的完成坝址的选择、水库容量以及蓄水的水位线的确定等方面的工作。  相似文献   

4.
本文提出了三种新的散斑照相孔径方法:一维调频孔径法,交叉孔径法和旋转孔径法。给出了理论分析和实验证明。这些方法简单实用,能有效地改变衍射晕的能量分布。适当选择孔径的参数,实验者能相当任意地控制散斑图的空间频率成份。新方法兼顾了突出某一频率成份、灵敏度连续可调、获得多个方向散斑场运动信息等各方面的特性。  相似文献   

5.
Based on the approximation theory adopting non-kirchhoff-Love assumption for three dimensional elastic plates with arbitrary shapes[1],[2], the author derives a functional of generalized variation for three dimensional elastic circular plates, thereby obtains a set of differential equations and the relate boundary conditions to establish a first order approximation theory for elastic circular plate with fixed boundary and under uniform loading on one of its surface. The analytical solution of this problem will present in another paper.  相似文献   

6.
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported. The project supported by the National Natural Science Foundation of China  相似文献   

7.
I.1ntroductionTheaxisymmetricproblemofthreedimensionalelasticcircularplatecanbetreatedasthreedimensionalaxisymmetricproblemofelasticity.Weconsideracircularplatewithauniformthicknessh,andsetupacircumferentialcoordinates(r,o)onitsmidd1esurfacewithabscissazp…  相似文献   

8.
The present paper is the lead article in a three‐part series on anisotropic mesh adaptation and its applications to structured and unstructured meshes. A flexible approach is proposed and tested on two‐dimensional, inviscid and viscous, finite volume and finite element flow solvers, over a wide range of speeds. The directional properties of an interpolation‐based error estimate, extracted from the Hessian of the solution, are used to control the size and orientation of mesh edges. The approach is encapsulated into an edge‐based anisotropic mesh optimization methodology (MOM), which uses a judicious sequence of four local operations: refinement, coarsening, edge swapping and point movement, to equi‐distribute the error estimate along all edges, without any recourse to remeshing. The mesh adaptation convergence of the MOM loop is carefully studied for a wide variety of test cases. The mesh optimization generic coupling of MOM with finite volume and finite element flow solvers is shown to yield the same final mesh no matter what the starting point is. It is also shown that on such optimized meshes, the need for computational fluid dynamics (CFD) stabilization artifices, such as upwinding or artificial viscosity, are drastically reduced, if not altogether eliminated, in most well‐posed formulations. These two conclusions can be considered significant steps towards mesh‐independent and solver‐independent CFD. The structure of the three‐part series is thus, 1, general principles; 2, methodology and applications to structured and unstructured grids; 3, applications to three‐dimensional flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
We present a remeshed particle‐mesh method for the simulation of three‐dimensional compressible turbulent flow. The method is related to the meshfree smoothed particle hydrodynamics method, but the present method introduces a mesh for efficient calculation of the pressure gradient, and laminar and turbulent diffusion. In addition, the mesh is used to remesh (reorganise uniformly) the particles to ensure a regular particle distribution and convergence of the method. The accuracy of the presented methodology is tested for a number of benchmark problems involving two‐ and three‐dimensional Taylor‐Green flow, thin double shear layer, and three‐dimensional isotropic turbulence. Two models were implemented, direct numerical simulations, and Smagorinsky model. Taking advantage of the Lagrangian advection, and the finite difference efficiency, the method is capable of providing quality simulations while maintaining its robustness and versatility.  相似文献   

10.
In this paper, we describe a new method for the three‐dimensional steady incompressible Navier–Stokes equations, which is called the dimension split method (DSM). The basic idea of DSM is that the three‐dimensional space is split up into a cluster of two‐dimensional manifolds and then the three‐dimensional solution is approximated by the solutions on these two‐dimensional manifolds. Through introducing some technologies, such as SUPG stabilization, multigrid method, and such, we firstly make DSM feasible in the computation of real flow. Because of split property of DSM, all computation is carried out on these two‐dimensional manifolds, namely, a series of two‐dimensional problems only need to be solved in the computation of three‐dimensional problem, which greatly reduces the difficulty and the computational cost in the mesh generation. Moreover, these two‐dimensional problems can be computed simultaneously and a coarse‐grained parallel algorithm would be constructed, whereas the two‐dimensional manifold is considered as the computation unit. In the last, we explore the behavior and the accuracy of the proposed method in two numerical examples. Firstly, error estimates, performance of multigrid method, and parallel algorithm are well‐demonstrated by the known analytical solution case. Secondly, the computations of three‐dimensional lid‐driven cavity flows with different Reynolds numbers are compared with other numerical simulations. Results show that the present implementation is able to exhibit good stability and accuracy properties for real flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A multiblock algorithm for general 2D and 3D turbulent flows is introduced and applied to three cases: a compressor cascade passage, a two-element high-lift aerofoil and a round-to-square transition duct. The method is a generalization of a single-block scheme which is based on a non-orthogonal, fully collocated finite volume framework, applicable to incompressible and compressible flows and incorporating a range of turbulence transport models, including second-moment closure. The multiblock implementation is essentially block-unstructured, each block having its own local co-ordinate system unrelated to those of its neighbours. Any one block may interface with more than one neighbour along any one block face. Interblock communication is handled by connectivity matrices and effected via a two-cell overlap region along block boundaries in which ‘halo data’ reside. The algorithm and the associated data communication are explained in detail, and its effectiveness is verified, with particular reference to improved numerical resolution and parallel computing.  相似文献   

12.
The widely studied benchmark problem, two‐dimensional‐driven cavity flow problem is discussed in detail in terms of physical and mathematical and also numerical aspects. A very brief literature survey on studies on the driven cavity flow is given. On the basis of several numerical and experimental studies, the fact of the matter is that physically the flow in a driven cavity is not two‐dimensional above moderate Reynolds numbers. However, there exist numerical solutions for two‐dimensional‐driven cavity flow at high Reynolds numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
基于以下假定条件:(1) 稳定系数定义为材料的强度折减系数;(2) 土体为刚体,底滑面服从Mohr-Columb强度破坏准则;(3) 微条柱底部法向力dNz的作用点处于条柱底部中点;(4)滑面剪力与底滑面和xoz平面交线的夹角为θ。本文建立了边坡三维极限平衡法的通用形式,通过给定不同的限制条件,可分别得到三维普通条分法 、三维简化毕肖普法 、三维简化简布法 、三维Spencer法 等三维极限平衡的具体算法。  相似文献   

14.
TVD格式在超音速喷管三维粘性流动求解中的应用   总被引:2,自引:0,他引:2  
详细给出了任意三维曲线坐标系中Novier-Stokes方程的对流项TVD格式的构造过程,建立了数值求解三维粘性流动的计算方法,应用该方法对三维超音速喷管中有激波及无激波情况下的两种工况的层流流场进行了数值求解,并与实验做了对比。结果表明本文建立的计算方法具有较高的精度,同时也证明TVD格式具有分辩率高,稳定收敛等优点,为进一步开展叶栅流场及紊流的研究打下了基础。  相似文献   

15.
丁星 《实验力学》1995,10(2):181-187
用三维光弹法测定了轴表面横向半椭圆裂纹的应力强度因子,并分析计算了应力强度因子修正系数,结果表明,应力强度因子的分布型式对加载条件和裂纹几何不敏感;修正系数对裂纹深度呈现对称分布趋势,仅取决于裂纹几何参数。  相似文献   

16.
In this paper we present a three‐dimensional Navier–Stokes solver for incompressible two‐phase flow problems with surface tension and apply the proposed scheme to the simulation of bubble and droplet deformation. One of the main concerns of this study is the impact of surface tension and its discretization on the overall convergence behavior and conservation properties. Our approach employs a standard finite difference/finite volume discretization on uniform Cartesian staggered grids and uses Chorin's projection approach. The free surface between the two fluid phases is tracked with a level set (LS) technique. Here, the interface conditions are implicitly incorporated into the momentum equations by the continuum surface force method. Surface tension is evaluated using a smoothed delta function and a third‐order interpolation. The problem of mass conservation for the two phases is treated by a reinitialization of the LS function employing a regularized signum function and a global fixed point iteration. All convective terms are discretized by a WENO scheme of fifth order. Altogether, our approach exhibits a second‐order convergence away from the free surface. The discretization of surface tension requires a smoothing scheme near the free surface, which leads to a first‐order convergence in the smoothing region. We discuss the details of the proposed numerical scheme and present the results of several numerical experiments concerning mass conservation, convergence of curvature, and the application of our solver to the simulation of two rising bubble problems, one with small and one with large jumps in material parameters, and the simulation of a droplet deformation due to a shear flow in three space dimensions. Furthermore, we compare our three‐dimensional results with those of quasi‐two‐dimensional and two‐dimensional simulations. This comparison clearly shows the need for full three‐dimensional simulations of droplet and bubble deformation to capture the correct physical behavior. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
采用VOF(Volume of Fluid)方法和PPM(Piecewise Parabolic Method)方法,发展了可用于可压缩多介质粘性流体动力学问题的数值模拟方法MVPPM(Multi-Viscous-Fluid Piecewise Parabolic Method)。利用MVPPM对多个具有不同初始扰动振幅的二维和三维单模态RM(Richtmyer-Meshkov)不稳定性模型进行了数值计算,并与理论模型的计算结果进行了比较。结果表明,无论二维还是三维情况,当初始扰动振幅相对于波长较小的时候,计算的扰动振幅和增长率与理论模型的计算结果一致。当初始扰动波长不变而振幅逐渐增大时,界面振幅和增长率也逐渐增大。对于具有相同初始扰动的情况,三维计算结果在线性段与二维计算结果相同,但是在非线性段比二维结果大,说明非线性和三维效应在RM不稳定性发展过程中起着重要作用。  相似文献   

18.
The steady extrusion of a Newtonian liquid through an annular die and its development outside and away from the die are studied under the influence of gravitational and surface tension forces. The finite element method (FEM) is used for the simulations. The positions of the inner and outer free surface profiles are calculated simultaneously with the other unknown fields, i.e. using the Newton–Raphson iterative scheme. The effects of three relevant parameters, i.e. the Reynolds, the Stokes and the capillary numbers, on the shape of the annular film are studied for two values of the inner to the outer diameter ratio, corresponding to a thick and a thin annular film respectively. A one‐dimensional model for the extrudate region, valid for thin annular films, is also presented, and its predictions are compared with the two‐dimensional finite element calculations. Despite the fact that it is valid away from the die exit, the one‐dimensional model predicts satisfactorily the effects of the Stokes and capillary numbers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Ductile crack growth under mode I, plane strain, small scale yielding conditions is analyzed. Overall plane strain loading is prescribed, but a full 3D analysis is carried out to model three dimensional microstructural effects. An elastic-viscoplastic constitutive relation for a porous plastic solid is used to model the material. Two populations of second-phase particles are represented, large inclusions with low strength, which result in large voids near the crack tip at an early stage, and small second-phase particles, which require large strains before cavities nucleate. The larger inclusions are represented discretely and the effects of different three dimensional distributions on the crack path and on the overall crack growth rate are analyzed. For comparison purposes, a two dimensional distribution of cylindrical inclusions is analyzed. Crack growth occurs off the initial crack plane in all 3D computations, whereas straight ahead crack growth occurs with the two dimensional cylindrical inclusions. As a consequence, the three dimensional distributions of spherical inclusions exhibit an increased crack growth resistance as compared to the two dimensional distribution of cylindrical inclusions.  相似文献   

20.
在线弹性理论中,三维 V 形切口/裂纹结构尖端区域存在多重应力奇异性,常规数值方法不易求解. 本文提出和建立了三维扩展边界元法 (XBEM),用于分析三维线弹性 V 形切口/裂纹结构完整的位移和应力场. 先将三维线弹性 V 形切口/裂纹结构分为尖端小扇形柱和挖去小扇形柱后的外围结构. 尖端小扇形柱内的位移函数采用自尖端径向距离 $r$ 的渐近级数展开式表达,其中尖端区域的应力奇异指数、位移和应力特征角函数通过插值矩阵法获得. 而级数展开式各项的幅值系数作为基本未知量. 挖去扇形域后的外围结构采用常规边界元法分析. 两者方程联立求解可获得三维 V 形切口/裂纹结构完整的位移和应力场,包括切口/裂纹尖端区域精细的应力场. 扩展边界元法具有半解析法特征,适用于一般三维 V 形切口/裂纹结构完整位移场和应力场的分析,其解可精细描述从尖端区域到整体结构区域的完整应力场. 作者研制了三维扩展边界元法程序,文中给出了两个算例,通过计算结果分析,表明了扩展边界元法求解三维 V 形切口/裂纹结构完整应力场的准确性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号