首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
For a large ensemble of complex systems, a Many-System Problem (MSP) studies how heterogeneity constrains and hides structural mechanisms, and how to uncover and reveal hidden major factors from homogeneous parts. All member systems in an MSP share common governing principles of dynamics, but differ in idiosyncratic characteristics. A typical dynamic is found underlying response features with respect to covariate features of quantitative or qualitative data types. Neither all-system-as-one-whole nor individual system-specific functional structures are assumed in such response-vs-covariate (Re–Co) dynamics. We developed a computational protocol for identifying various collections of major factors of various orders underlying Re–Co dynamics. We first demonstrate the immanent effects of heterogeneity among member systems, which constrain compositions of major factors and even hide essential ones. Secondly, we show that fuller collections of major factors are discovered by breaking heterogeneity into many homogeneous parts. This process further realizes Anderson’s “More is Different” phenomenon. We employ the categorical nature of all features and develop a Categorical Exploratory Data Analysis (CEDA)-based major factor selection protocol. Information theoretical measurements—conditional mutual information and entropy—are heavily used in two selection criteria: C1—confirmable and C2—irreplaceable. All conditional entropies are evaluated through contingency tables with algorithmically computed reliability against the finite sample phenomenon. We study one artificially designed MSP and then two real collectives of Major League Baseball (MLB) pitching dynamics with 62 slider pitchers and 199 fastball pitchers, respectively. Finally, our MSP data analyzing techniques are applied to resolve a scientific issue related to the Rosenberg Self-Esteem Scale.  相似文献   

3.
We studied the dynamics of a prototypical electrochemical model, the electro-oxidation of hydrogen in the presence of poisons, under galvanostatic conditions. The lumped system exhibits relaxation oscillations, which develop mixed-mode oscillations (MMOs) for low preset currents. A fast-slow analysis of the homogeneous dynamics reveals that the MMOs arise from a fast oscillating subsystem and a one-dimensional slow manifold. In the spatially extended system, the galvanostatic constraint imposes a synchronizing global coupling that drives the system into cluster patterns. The properties of the cluster patterns (CPs) result from an intricate interplay of the nature of the local oscillators, the global constraint, and a nonlocal coupling through the electrolyte. In particular, we find that the global constraint suppresses small-amplitude oscillations of MMOs and prevents domains oscillating out of phase from occupying equal regions in phase space. The nonlocal coupling causes each individual clustered region to oscillate on a different limit cycle. Typically multistability of CPs is found. Coexisting patterns possess different oscillation periods and a different total fraction in space that occupies the in-phase or out-of-phase state, respectively.  相似文献   

4.
We investigate the behavior of a quantum resonator coupled to a superconducting single-electron transistor (SSET) tuned to the Josephson quasiparticle resonance and show that the dynamics is similar in many ways to that found in a micromaser. Coupling to the SSET can drive the resonator into nonclassical states of self-sustained oscillation via either continuous or discontinuous transitions. Increasing the coupling further leads to a sequence of transitions and regions of multistability.  相似文献   

5.
We analyze the nonlinear dynamics of a high-finesse optical cavity in which one mirror is mounted on a flexible mechanical element. We find that this system is governed by an array of dynamical attractors, which arise from phase locking between the mechanical oscillations of the mirror and the ringing of the light intensity in the cavity. We develop an analytical theory to map out the diagram of attractors in parameter space, derive the slow amplitude dynamics of the system, including thermal fluctuations, and suggest a scheme for exploiting the dynamical multistability in the measurement of small displacements.  相似文献   

6.
In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.  相似文献   

7.
The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the smallamplitude regime. While in this article, we focus on optomechanics in the extremely-large-amplitude regime and consider both classical and quantum dynamics. Firstly, we study classical dynamics in a membrane-in-the-middle optomechanical system in which a partially reflecting and flexible membrane is suspended inside an optical cavity. We show that the membrane can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and exhibit dynamical multistability. Then, we study the dynamics of the quantum fluctuations around the classical orbits. By using the logarithmic negativity, we calculate the evolution of the quantum entanglement between the optical cavity mode and the membrane during the mechanical oscillation. We show that there is some synchronism between the classical dynamical process and the evolution of the quantum entanglement.  相似文献   

8.
本文基于Hill动力学与Michaelis-Menten方程,建立理论模型研究两细胞间基因、蛋白耦合振荡中的噪声效应.研究发现,在Notch信号通路中,两细胞间基因、蛋白耦合振荡呈现了周期振荡特性,表明了细胞间信号传导的同步振荡特性.“内在”噪声和“外在”噪声对两细胞间基因、蛋白耦合振荡有着不同的作用.内噪声有利于细胞间Notch信号通路中各基因、蛋白表达再次提升.外噪声诱导通路中基因、蛋白的表达水平降低,周期振荡变得阻尼.内、外噪声共同作用不仅可使得基因表达适当并呈现出持续振荡模式,而且还可使得细胞间基因转录合成相应的蛋白过程呈现出持续振荡模式.从而表明了基因表达的内、外噪声共同作用有利于控制细胞间基因激活、蛋白合成保持周期节律性.本文理论结果揭示了内外噪声对细胞间Notch信号通路动力学的一种调控机制,确定了内外噪声各自的调控效应,澄清了内外噪声共同作用调控体系持续周期振荡的物理机制,理论结果符合实验,可为设计阻止Notch体系基因、蛋白变异导致的多种疾病和癌症的通路治疗方案提供理论依据.  相似文献   

9.
The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23 kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter (“red region”), while such emissions are nearly absent close to the horn tip (“blue region”). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.  相似文献   

10.
Modelling the epidemic’s spread on multiplex networks, considering complex human behaviours, has recently gained the attention of many scientists. In this work, we study the interplay between epidemic spreading and opinion dynamics on multiplex networks. An agent in the epidemic layer could remain in one of five distinct states, resulting in the SIRQD model. The agent’s attitude towards respecting the restrictions of the pandemic plays a crucial role in its prevalence. In our model, the agent’s point of view could be altered by either conformism mechanism, social pressure, or independent actions. As the underlying opinion model, we leverage the q-voter model. The entire system constitutes a coupled opinion–dynamic model where two distinct processes occur. The question arises of how to properly align these dynamics, i.e., whether they should possess equal or disparate timescales. This paper highlights the impact of different timescales of opinion dynamics on epidemic spreading, focusing on the time and the infection’s peak.  相似文献   

11.
Optical multistability in an optical ring cavity filled with a collection of three-level Lambda-type rubidium atoms has been experimentally demonstrated. The observed multistability is very sensitive to the induced atomic coherence in the system and can evolve from a normal bistable behavior with the change of the coupling field as well as the atomic number density. The underlying mechanism for the formation of such multistability is also discussed.  相似文献   

12.
13.
14.
A system of globally coupled maps whose synchronized dynamics differs from the individual (chaotic) evolution is considered. For nonchaotic synchronized dynamics, the synchronized state becomes stable at a critical coupling intensity lower than that of the fully chaotic case. Below such critical point, synchronization is also stable in a set of finite intervals. Moreover, the system is shown to exhibit multistability, so that even when the synchronized state is stable not all the initial conditions lead to synchronization of the ensemble. Received 22 October 1999  相似文献   

15.
Multistability, i.e., the coexistence of several attractors for a given set of system parameters, is one of the most important phenomena occurring in dynamical systems. We consider it in the velocity dynamics of a Brownian particle, driven by thermal fluctuations and moving in a biased periodic potential. In doing so, we focus on the impact of ergodicity—A concept which lies at the core of statistical mechanics. The latter implies that a single trajectory of the system is representative for the whole ensemble and, as a consequence, the initial conditions of the dynamics are fully forgotten. The ergodicity of the deterministic counterpart is strongly broken, and we discuss how the velocity multistability depends on the starting position and velocity of the particle. While for non-zero temperatures the ergodicity is, in principle, restored, in the low temperature regime the velocity dynamics is still affected by initial conditions due to weak ergodicity breaking. For moderate and high temperatures, the multistability is robust with respect to the choice of the starting position and velocity of the particle.  相似文献   

16.
We theoretically study the spin properties of two interacting electrons confined in the IhAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI induced spin mixing of the singlet and the triplet states, we show the different spin properties for the weak and strong SOI. We investigate the coherent singlet-triplet spin oscillations of the two electrons under the SOI, and demonstrate the detailed behaviors of the spin oscillations depending on the SOI strengths, the inter-dot separations and the external magnetic fields. To better understand the underlying physics of the spin dynamics, we introduce a four-level model Hamiltonian for both weak and strong SOI, and find that the SOI induced in plane effective magnetic fields can be quantitatively extracted from the two-electron excitation energy spectra.  相似文献   

17.
《Comptes Rendus Physique》2012,13(5):440-453
We explore the quantum dynamics of a mechanical resonator whose position is coupled to the frequency of an optical (or microwave) cavity mode. When the cavity is driven at a frequency above resonance the mechanical resonator can gain energy and for sufficiently strong coupling this results in limit-cycle oscillations. Using a truncated Wigner function approach, which captures the zero-point fluctuations in the system, we develop an approximate analytic treatment of the resonator dynamics in the limit-cycle regime. We find that the limit-cycle oscillations produced by the cavity are associated with rather low levels of energy fluctuations in the resonator. Compared to a resonator at the same temperature which is driven by a pure harmonic drive to a given average energy, the cavity-driven oscillations can have much lower energy fluctuations. Furthermore, at sufficiently low temperatures, the cavity can drive the resonator into a non-classical state which is number-squeezed.  相似文献   

18.
We consider the dynamics of a number of externally excited chaotic oscillators suspended on an elastic structure. We show that for the given conditions of oscillations of the structure, initially uncorrelated chaotic oscillators become periodic and synchronous in clusters. In the periodic regime, we have observed multistability as two or four different attractors coexist in each cluster. A mismatch of the excitation frequency in the oscillators leads to the beating-like behaviour. We argue that the observed phenomena are generic in the parameter space and independent of the number of oscillators and their location on the elastic structure.  相似文献   

19.
Stefanie Thiem 《哲学杂志》2015,95(11):1233-1243
Recently, the occurrence of log-periodic oscillations in the quantum dynamics of electrons was reported for the one-dimensional Fibonacci quasicrystal by Lifshitz and Even-Dar Mandel. We apply a real-space renormalization group approach to show that these log-periodic oscillations are related to the underlying quasiperiodic structure of the Fibonacci quasicrystal. We find that they originate from the superposition of bonding and antibonding states associated to strongly coupled atoms in the chains, and that they show a hierarchical structure closely related to the atomic configurations.  相似文献   

20.
Spin-wave instabilities in spheres of yttrium iron garnet have been studied by ferromagnetic resonance within the coincidence regime of the first-order Suhl instability (1.8–3.4 GHz), i.e. both the uniform mode and pairs of spin-waves were simultaneously excited on resonance. From the characteristic behaviour above the threshold, three different regimes of resonance fields (and frequencies) could be distinguished: For low fields (640–680 Oe) and for high fields (950–1210 Oe) the amplitude of magnetization remains time independent and only at high input power becomes suddenly chaotic. In the intermediate regime (680–950 Oe) a very complex multistable behaviour occurs and a variety of oscillations and sequences of bifurcations are observed. We discuss our experimental results in terms of a multi-mode model which, beyond spin-waves, considers the excitation of longwave modes with wavelengths in the order of sample dimension. Magnetostatic modes and spin-waves can be described within a unified picture by introducing spherical spin-waves which are classified by symmetry. A new mechanism based on the indirect excitation of the magnetostatic (4,3,0) mode is introduced. Numerical simulations show that this mechanism can explain both the multistability and the complex dynamic behaviour of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号