首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solids (or structures) of elastic–plastic internal variable material models and subjected to cyclic loads are considered. A minimum net resistant power theorem, direct consequence of the classical maximum intrinsic dissipation theorem of plasticity theory, is envisioned which describes the material behavior by determining the plastic flow mechanism (if any) corresponding to a given stress/hardening state. A maximum principle is provided which characterizes the optimal initial stress/hardening state of a cyclically loaded structure as the one such that the plastic strain and kinematic internal variable increments produced over a cycle are kinematically admissible. A steady cycle minimum principle, integrated form of the aforementioned minimum net resistant power theorem, is provided, which characterizes the structure’s steady state response (steady cycle) and proves to be an extension to the present context of known principles of perfect plasticity. The optimality equations of this minimum principle are studied and two particular cases are considered: (i) loads not exceeding the shakedown limit (so recovering known results of shakedown theory) and (ii) specimen under uniform cyclic stress (or strain). Criteria to assess the structure’s ratchet limit loads are given. These, together with some insensitivity features of the structure’s alternating plasticity state, provide the basis to the ratchet limit load analysis problem, for which solution procedures are discussed.  相似文献   

2.
The class of generalized standard materials is not relevant to model the nonassociative constitutive equations. The bipotential approach, based on a possible generalization of Fenchel’s inequality, allows the recovery of the flow rule normality in a weak form of an implicit relation. This defines the class of implicit standard materials. For such behaviours, this leads to a weak extension of the classical bound theorems of the shakedown analysis. In the present paper, we recall the relevant features of this theory. Considering an elastoplastic material with nonlinear kinematic hardening rule, we apply it to the problem of a sample in plane strain conditions under constant traction and alternating torsion in order to determine analytically the interaction curve bounding the shakedown domain. The aim of the paper is to prove the exactness of the solution for this example by comparing it to step-by-step computations of the elastoplastic response of the body under repeated cyclic loads of increasing level. A reliable criterion to stop the computations is proposed. The analytical and numerical solutions are compared and found to be closed one of each other. Moreover, the method allows uncovering an additional ‘2 cycle shakedown curve’ that could be useful for the shakedown design of structure.  相似文献   

3.
Summary  Criteria for a priori recognition of the type of steady-state response induced by cyclic loads and prediction whether a structure will shakedown elastically or not, without the necessity of performing a step-by-step full analysis, have considerable importance. Melan and Koiter theorems provide criteria that guarantee whether elastic shakedown occurs or not under cyclic loads in case of perfect plasticity. However, there remain some aspects of the shakedown theory which deserve further study. One of these, concerned with more realistic nonassociative elastic–plastic constitutive material models, allowing for nonlinear kinematic and isotropic hardening suitable to describe the cyclic plastic behaviour of metallic materials, has strong motivation. Koiter's elastic nonshakedown theorem is reconsidered here, with the objective of extending it to the de Saxcé's implicit standard material class, which contains a wide class of nonassociative elastic–plastic material behaviours. Shakedown analysis is formulated by a kinematic approach based on the plastic accumulation mechanism concept due to Polizzotto. A sufficient condition for elastic nonshakedown and a distinct necessary condition are established. Then, an upper bound to the shakedown multiplier is evaluated. Received 15 February 2001; accepted for publication 18 October 2001  相似文献   

4.
Phase transformational shakedown of a structure refers to a status that plastic strains cease developing after a finite number of loading cycles, and subsequently the structure undergoes only elastic deformation and alternating phase transformations with limited magnitudes. Due to the intrinsic complexity in the constitutive relations of shape memory alloys (SMA), there is as yet a lack of effective methods for modeling the mechanical responses of SMA structures, especially when they develop both phase transformation and plastic deformation. This paper is devoted to present an algorithm for analyzing shakedown of SMA structures subjected to cyclic or varying loads within specified domains. Based on the phase transformation and plastic yield criteria of von Mises-type and their associated flow rules, a simplified three-dimensional phenomenological constitutive model is first formulated accounting for different regimes of elastic–plastic deformation and phase transformation. Different responses possible for SMA bodies exposed to varying loads are discussed. The classical Melan shakedown theorem is extended to determine a lower bound of loads for transformational shakedown of SMA bodies without necessity of a step-by-step analysis along the loading history. Finally, a simple example is given to illustrate the application of the present theory as well as some basic features of shakedown of SMA structures. It is interesting to find that phase transformation may either increase or decrease the load-bearing capacity of a structure, depending upon its constitutive relations, geometries and the loading mode.  相似文献   

5.
In this paper, the static shakedown theorem is reformulated making use of the symmetric Galerkin boundary element method (SGBEM) rather than of finite element method. Based on the classical Melan’s theorem, a numerical solution procedure is presented for shakedown analysis of structures made of elastic-perfectly plastic material. The self-equilibrium stress field is constructed by linear combination of several basis self-equilibrium stress fields with parameters to be determined. These basis self-equilibrium stress fields are expressed as elastic responses of the body to imposed permanent strains obtained through elastic–plastic incremental analysis. The lower bound of shakedown load is obtained via a non-linear mathematical programming problem solved by the Complex method. Numerical examples show that it is feasible and efficient to solve the problems of shakedown analysis by using the SGBEM.  相似文献   

6.
In this paper, shakedown of a cohesive-frictional half space subjected to moving surface loads is investigated using Melan’s static shakedown theorem. The material in the half space is modelled as a Mohr–Coulomb medium. The sliding and rolling contact between a roller and the half space is assumed to be plane strain and can be approximated by a trapezoidal as well as a Hertzian load distribution. A closed form solution to the elastic stress field for the trapezoidal contact is derived, and is then used for the shakedown analysis. It is demonstrated that, by relaxing either the equilibrium or the yield constraints (or both) on the residual stress field, the shakedown analysis leads to various bounds for the elastic shakedown limit. The differences among the various shakedown load factors are quantitatively compared, and the influence of both Hertzian and trapezoidal contacts for the half space under moving surface loads is studied. The various bounds and shakedown limits obtained in the paper serve as useful benchmarks for future numerical shakedown analysis, and also provide a valuable reference for the safe design of pavements.  相似文献   

7.
In the plane-strain conditions of a long cylinder in rolling line contact with an elastic-perfectly-plastic half-space an exact shakedown limit has been established previously by use of both the statical (lower bound) and kinematical (upper bound) shakedown theorems. At loads above this limit incremental strain growth or “ratchetting” takes place by a mechanism in which surface layers are plastically sheared relative to the subsurface material.In this paper the kinematical shakedown theorem is used to investigate this mode of deformation for rolling and sliding point contacts, in which a Hertz pressure and frictional traction act on an elliptical area which repeatedly traverses the surface of a half-space. Although a similar mechanism of incremental collapse is possible, the behaviour is found to be different from that in two-dimensional line contact in three significant ways: (i) To develop a mechanism for incremental growth the plastic shear zone must spread to the surface at the sides of the contact so that a complete segment of material immediately beneath the loaded area is free to displace relative to the remainder of the half-space, (ii) Residual shear stresses orthogonal to the surface are developed in the subsurface layers, (iii) A range of loads is found in which a closed cycle of alternating plasticity takes place without incremental growth, a condition often referred to as “plastic shakedown”.Optimal upper bounds to both the elastic and plastic shakedown limits have been found for varying coefficients of traction and shapes of the loaded ellipse. The analysis also gives estimates of the residual orthogonal shear stresses which are induced.  相似文献   

8.
An elastic–plastic material model with internal variables and thermodynamic potential, not admitting hardening states out of a saturation surface, is assumed as a basis to formulate a statical Melan-type shakedown theorem. Grounding on the optimality conditions relative to the shakedown load multiplier problem for a structure subjected to cyclic loads, the impending inadaptation collapse mechanism at the shakedown limit state is analyzed and discussed. It is shown that the adopted model is able to catch ratchetting collapse mode at a structural level. Numerical results for a simple structure are finally reported.  相似文献   

9.
In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.  相似文献   

10.
Although the shakedown theorems for perfect plasticity have been known since Koiter's 1960 review paper, extensions of the theory to situations where ratchetting or reverse plasticity occurs in excess of shakedown have not appeared in the literature. In this paper a generalisation of the upper bound theorem is derived which reduces to the upper bound shakedown theorem in the limiting case when the load point approaches the shakedown boundary. The new theory is used to develop a method for identifying the ratchet limit for a class of loading histories through the sequential minimisation of two functionals. A programming method, based on the Elastic Compensation method for shakedown is then derived and convergence proven. Numerical examples of the application of the method to practical problems are discussed by us in an accompanying paper.  相似文献   

11.
The present work deals with the uniqueness theorem for plane crack problems in solids characterized by dipolar gradient elasticity. The theory of gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory employed here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. These cases are also treated in the present study. We consider an anisotropic material response of the cracked plane body, within the linear version of gradient elasticity, and conditions of plane-strain or anti-plane strain. It is emphasized that, for crack problems in general, a uniqueness theorem more extended than the standard Kirchhoff theorem is needed because of the singular behavior of the solutions at the crack tips. Such a theorem will necessarily impose certain restrictions on the behavior of the fields in the vicinity of crack tips. In standard elasticity, a theorem was indeed established by Knowles and Pucik [Knowles, J.K., Pucik, T.A., 1973. Uniqueness for plane crack problems in linear elastostatics. J. Elast. 3, 155–160], who showed that the necessary conditions for solution uniqueness are a bounded displacement field and a bounded body-force field. In our study, we show that the additional (to the two previous conditions) requirement of a bounded displacement-gradient field in the vicinity of the crack tips guarantees uniqueness within the general form of the theory of dipolar gradient elasticity. In the specific cases of couple-stress elasticity and pure strain-gradient elasticity, the additional requirement is less stringent. This only involves a bounded rotation field for the first case and a bounded strain field for the second case.  相似文献   

12.
In this article, the ductile damage of materials is introduced into the shakedown theory of strain-hardening structures. A mathematical programming method is developed to calculate an upper bound of the damage factor in a structure subjected to varying loads, which is suggested as the criterion of structural failure. Based on it, a lower bound of the safe load factor can be obtained for a strain-hardening structure via a mathematical programming. The application of this theory is demonstrated by analysing the thick-walled cylindrical tube.  相似文献   

13.
14.
A well-known deficiency of the classical theory of elasticity is that it does not predict dispersive Rayleigh-wave motions at any frequency. This contradicts experimental data and predictions of the discrete particle theory (atomic-lattice approach) for high frequencies. The present work is intended to explore whether the elastic couple-stress theory with micro-structure can overcome the deficiency of the classical theory. Our analysis shows indeed that Rayleigh waves propagating along the surface of a half-space are dispersive at high frequencies, a result that can be useful in applications of high-frequency surface waves where the wavelength is often of the micron order. Provided that certain relations hold between the various micro-structure parameters entering the theory employed here, the dispersion curves of these waves have the same form as that given by previous analyses based on the atomic-lattice theory. In this way, the present analysis gives means to obtain estimates for micro-structure parameters of the couple-stress theory. Besides the Rayleigh-wave results reported here, basic theoretical results for the kinetic energy and momentum balance laws in micro-structured media with couple-stress effects are derived and presented.  相似文献   

15.
We present a numerical method for the computation of shakedown loads of engineering structures with limited kinematical hardening under thermo-mechanical loading. The method is based on Melan’s statical shakedown theorem, which results in a nonlinear convex optimization problem. This is solved by an interior-point algorithm recently developed by the authors, specially designed for lower bound shakedown analysis of large-scale problems. Limited kinematical hardening is taken into account by use of a two-surface model, such that both alternating plasticity and incremental collapse can be captured. For the yield surface as well as for the bounding surface the von Mises criterion is used. The proposed method is validated by two examples, where numerical results are compared to those of literature where available.  相似文献   

16.
Indentation tests have long been a standard method for material characterization due to the fact that they provide an easy, inexpensive, non-destructive and objective method of evaluating basic properties from small volumes of materials. As the contact scales in such experiments reduce progressively (micro to nano-scales) the internal material lengths become important and their effect upon the macroscopic response cannot be ignored. In the present study, we derive general solutions for three basic two-dimensional (2D) plane-strain contact problems within the framework of the generalized continuum theory of couple-stress elasticity. This theory introduces characteristic material lengths in order to describe the pertinent scale effects that emerge from the underlying microstructure and has proved to be very effective for modeling microstructured materials. By using this theory, we initially study the problem of the indentation of a deformable elastic half-plane by a flat punch, then by a cylindrical indentor, and finally by a shallow wedge indentor. Our approach is based on singular integral equations which have resulted from a treatment of the mixed boundary value problems via integral transforms and generalized functions. The results show significant departure from the predictions of classical elasticity revealing that it is inadequate to analyze indentation problems in microstructured materials employing only classical contact mechanics.  相似文献   

17.
苏文政  刘书田 《力学学报》2008,40(6):776-785
考察了结构最小尺寸与材料特征长度量级相当的格栅材料等效性能,建议了基于偶应力理论的格栅材料等效介质模型以及确定等效模量的代表体元模型,给出了相应的位移边界条件. 在此基础上导出了正交各向异性偶应力介质的特征长度表达式和偶应力介质梁的抗弯刚度表达式,定义了偶应力影响因子\delta以表征梁的偶应力效应. 具体计算了几种典型的格栅材料的等效偶应力模量以及格栅梁在一定工况下的挠曲线,并与相应的有限元离散解进行对比,结果表明,等效结果具有较高精度,且当宏观结构的尺寸和微结构尺寸相差不大时,宏观结构表现出强烈的偶应力效应.偶应力介质的特征长度表征了偶应力效应的强弱,进而分析了格栅材料的相对密度,单胞尺寸以及几何构型对等效介质特征长度的影响.   相似文献   

18.
The classical shakedown theory is extended to a class of perfectly plastic materials with strengthening effects (Hall–Petch effects). To this aim, a strain gradient plasticity model previously advanced by Polizzotto (2010) is used, whereby a featuring strengthening law provides the strengthening stress, i.e. the increase of the yield strength produced by plastic deformation, as a degree-zero homogeneous second-order differential form in the accumulated plastic strain with associated higher order boundary conditions. The extended static (Melan) and kinematic (Koiter) shakedown theorems are proved together with the related lower bound and upper bound theorems. The shakedown limit load problem is addressed and discussed in the present context, and its solution uniqueness shown out. A simple micro-scale structural system is considered as an illustrative example. The shakedown limit load is shown to increase with decreasing the structural size, which is a manifestation of the classical Hall–Petch effects in a context of cyclic loading.  相似文献   

19.
20.
基于偶应力模型的连续体结构拓扑优化设计   总被引:1,自引:0,他引:1  
经典连续介质理论不包含材料尺度参数,因而基于经典理论的结构拓扑优化无法显现尺度效应.本文在偶应力理论的框架下,构造了四节点四边形离散偶应力单元,将传统的SIMP方法推广至偶应力介质.结果表明,在以结构的最大刚度为目标的设计中,偶应力介质的最优结果取决于宏观结构尺寸与材料微结构尺寸(或者特征长度)的比值,最优结果具有明显的尺度效应,具体为,二者比值较大将产生与传统理论相似的结构,而二者比值相当则产生独特的偶应力主导的结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号