首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemistry of DNA and its repair selectivity control the influence of genomic oxidative stress on the development of serious disorders such as cancer and heart diseases. DNA is oxidized by endogenous reactive oxygen species (ROS) in vivo or in vitro as a result of high energy radiation, non-radiative metabolic processes, and other consequences of oxidative stress. Some oxidations of DNA and tumor suppressor gene p53 are thought to be mutagenic when not repaired. For example, site-specific oxidations of p53 tumor suppressor gene may lead to cancer-related mutations at the oxidation site codon. This review summarizes the research on the primary products of the most easily oxidized nucleobase guanine (G) when different oxidation methods are used. Guanine is by far the most oxidized DNA base. The primary initial oxidation product of guanine for most, but not all, pathways is 8-oxoguanine (8-oxoG). With an oxidation potential much lower than G, 8-oxoG is readily susceptible to further oxidation, and the products often depend on the oxidants. Specific products may control the types of subsequent mutations, but mediated by gene repair success. Site-specific oxidations of p53 tumor suppressor gene have been reported at known mutation hot spots, and the codon sites also depend on the type of oxidants. Modern methodologies using LC–MS/MS for codon specific detection and identification of oxidation sites are summarized. Future work aimed at understanding DNA oxidation in nucleosomes and interactions between DNA damage and repair is needed to provide a better picture of how cancer-related mutations arise.  相似文献   

2.
范健  张华林  谭春燕  蒋宇扬 《化学进展》2007,19(12):1955-1964
细胞凋亡的调控作为治疗肿瘤的新兴手段,近年来受到广泛关注。本文对细胞凋亡途径中的重要靶点,包括Bcl-2,IAP,p53等的结构及作用机制作了较详尽的阐述,并且总结了针对上述不同靶点的对细胞凋亡进行调控的化学小分子的研究。在对这些研究现状进行分析的基础上,对该研究领域下一步的发展方向提出了我们的观点。  相似文献   

3.
A series of novel indolone derivatives were synthesized and evaluated for their binding affinities toward MDM2 and MDMX. Some compounds showed potent MDM2 and moderate MDMX activities. Among them, compound A13 exhibited the most potent affinity toward MDM2 and MDMX, with a Ki of 0.031 and 7.24 μM, respectively. A13 was also the most potent agent against HCT116, MCF7, and A549, with IC50 values of 6.17, 11.21, and 12.49 μM, respectively. Western blot analysis confirmed that A13 upregulated the expression of MDM2, MDMX, and p53 by Western blot analysis. These results indicate that A13 is a potent dual p53-MDM2 and p53-MDMX inhibitor and deserves further investigation.  相似文献   

4.
A novel sensitive and simple electrochemical DNA sensor is reported for the determination of p53 tumor suppressor gene. A gold nanoparticle/graphene nanocomposite-modified glassy carbon electrode was prepared and methylene blue was used as the hybridization redox indicator. Scanning electron microscopic and electrochemical characterization demonstrated that the gold nanoparticles and graphene were present on the electrode. The resulting sensor provided suitable electrochemical response to the p53 tumor suppressor gene with a linear dynamic range from 0.1 to 1000?nM. The limit of detection was 0.012?nM. The sensor was able to differentiate a complete complementary DNA sequence, single-base mismatched DNA sequence, and a three-base mismatched DNA sequence. The precision of the device was satisfactory, with a relative standard deviation of 4.1% for 11 measurements. The combination of gold nanoparticles and a graphene nanocomposite provided enhanced capabilities for the determination of DNA for clinical applications.  相似文献   

5.
6.
We assessed the abilities of wild p53 and mutant p53 proteins to interact with the consensus DNA-binding sequence using a MOSFET biosensor. This is the first report in which mutant p53 has been detected on the basis of DNA-protein interaction using a FET-type biosensor. In an effort to evaluate the performance of this protocol, we constructed the core domain of wild p53 and mutant p53 (R248W), which is DNA-binding-defective. After the immobilization of the cognate DNA to the sensing layer, wild p53 and mutant p53 were applied to the DNA-coated gate surface, and subsequently analyzed using a semiconductor analyzer. As a consequence, a significant up-shift in drain current was noted in response to wild p53, but not mutant p53, thereby indicating that sequence-specific DNA-protein interactions could be successfully monitored using a field-effect-based biosensor. These data also corresponded to the results obtained using surface plasmon resonance (SPR) measurements. Taken together, our results show that a FET-type biosensor might be promising for the monitoring of mutant p53 on the basis of its DNA-binding activity, providing us with very valuable insights into the monitoring for diseases, particularly those associated with DNA-protein binding events.  相似文献   

7.
8.
为了获得p53突变体的稳定剂,依次利用利宾斯基五原则,通过2次分子对接和全原子分子动力学(MD)模拟从Drug Bank 4.0数据库中筛选获得了潜在的稳定剂他克林.利用MD模拟进一步验证他克林和目标蛋白质之间的亲和作用.结果表明,他克林能够紧密结合到Y220C突变所形成的疏水空腔之中;他克林和目标蛋白质之间的主要作用力为疏水和静电相互作用,其中疏水相互作用占主导地位.此外,他克林分别与目标蛋白质的残基Leu145,Val147和Asp228形成3个氢键.基于MD模拟轨迹分析了他克林与p53CY220C的结合过程.由硫黄素T荧光光谱进一步证明他克林能够提高p53C-Y220C突变体的稳定性.  相似文献   

9.
A new electrochemical PNA hybridization biosensor for detection of a 15‐mer sequence unique to p53 using indigo carmine (IC) as an electrochemical detector is described in this work. This genosensor is based on the hybridization of target oligonucleotide with its complementary probe immobilized on the gold electrode by self‐assembled monolayer formation. Because this label is electroactive in acidic medium, the interaction between IC and short sequence of p53 is studied by differential pulse voltammety (DPV) in 0.1 M H2SO4. The results of electrochemical impedance spectroscopy and cyclic voltammetry in the solution of [Fe(CN)6]3?/4? shows no breakage in PNA‐DNA duplex. A decrease in the voltammetric peak currents of IC is observed upon hybridization of the probe with the target DNA. The influence of probe concentration on effective discrimination against non‐complementary oligonucleotides is investigated and a concentration of 10?7 M is selected. The diagnostic performance of the PNA sensor is described and the detection limit is found to be 4.31×10?12 M.  相似文献   

10.
Oligosaccharides represent potentially useful scaffolds for the development of peptidomimetics. We report here the design and synthesis of functionalized trisaccharides modeled after an α-helical 15-mer peptide region of p53 which binds to its cellular regulator MDM2. The trisaccharide scaffold was obtained efficiently by applying the sulfoxide glycosylation reaction as a key methodology.  相似文献   

11.
A novel electrochemical biosensor based on functional composite nanofibers for sensitive hybridization detection of p53 tumor suppressor using methylene blue (MB) as an electrochemical indicator is developed. The carboxylated multi-walled carbon nanotubes (MWNTs) doped nylon 6 (PA6) composite nanofibers (MWNTs–PA6) was prepared using electrospinning, which served as the nanosized backbone for pyrrole (Py) electropolymerization. The functional composite nanofibers (MWNTs–PA6–PPy) used as supporting scaffolds for ssDNA immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. The biosensor displayed good sensitivity and specificity. The target wild type p53 sequence (wtp53) can be detected as low as 50 fM and the discrimination is up to 57.5% between the wtp53 and the mutant type p53 sequence (mtp53). It holds promise for the early diagnosis of cancer development and monitoring of patient therapy.  相似文献   

12.
p53 is an important tumor‐suppressor protein deactivation of which by mdm2 results in cancers. A SUMO‐specific protease 4 (SUSP4) was shown to rescue p53 from mdm2‐mediated deactivation, but the mechanism is unknown. The discovery by NMR spectroscopy of a “p53 rescue motif” in SUSP4 that disrupts p53‐mdm2 binding is presented. This 29‐residue motif is pre‐populated with two transient helices connected by a hydrophobic linker. The helix at the C‐terminus binds to the well‐known p53‐binding pocket in mdm2 whereas the N‐terminal helix serves as an affinity enhancer. The hydrophobic linker binds to a previously unidentified hydrophobic crevice in mdm2. Overall, SUSP4 appears to use two synergizing modules, the p53 rescue motif described here and a globular‐structured SUMO‐binding catalytic domain, to stabilize p53. A p53 rescue motif peptide exhibits an anti‐tumor activity in cancer cell lines expressing wild‐type p53. A pre‐structures motif in the intrinsically disordered proteins is thus important for target recognition.  相似文献   

13.
采用Catalyst软件, 选择5类共24个p53-MDM2结合抑制剂作为训练集, 经计算机建模、构象优化, 由Catalyst系统构建出药效团模型, 并对药效团进行有效性分析, 结合已知的p53-MDM2结合抑制剂的结构信息, 筛选得到含有一个芳环中心、三个疏水中心和一个氢键受体的具有较好预测能力(Correl=0.941, Config=17.530, 吟cost=150.830)的药效团模型.  相似文献   

14.
Xie Y  Chen A  Du D  Lin Y 《Analytica chimica acta》2011,699(1):44-48
We reported a graphene-based immunosensor for electrochemical quantification of phosphorylated p53 on serine 15 (phospho-p5315), a potential biomarker of gamma-radiation exposure. The principle is based on sandwich immunoassay and the resulting immunocomplex is formed among phospho-p53 capture antibody, phospho-p5315 antigen, biotinylated phospho-p5315 detection antibody and horseradish peroxidase (HRP)-labeled streptavidin. The introduced HRP results in an electrocatalytic response to reduction of hydrogen peroxide in the presence of thionine. Graphene served as sensor platform not only promotes electron transfer, but also increases the surface area to introduce a large amount of capture antibody, thus increasing the detection sensitivity. The experimental conditions including blocking agent, immunoreaction time and substrate concentration have been optimized. Under the optimum conditions, the increase of response current is proportional to the phospho-p5315 concentration in the range of 0.2–10 ng mL−1, with the detection limit of 0.1 ng mL−1. The developed immunosensor exhibits acceptable stability and reproducibility and the assay results for phospho-p5315 are in good correlation with the known values. This easily fabricated immunosensor provides a new promising tool for analysis of phospho-p5315 and other phosphorylated proteins.  相似文献   

15.
介绍了一种利用金胶的选择性聚集实现信号扩增的超灵敏的电化学方法, 用于人类p53肿瘤抑制剂基因的检测. 在实验中, 根据p53基因的序列设计了能特异性检测p53肿瘤抑制剂基因的二段探针, 在一段探针上固定磁性颗粒以捕获并富集目标基因, 同时在另一段探针上标记金纳米颗粒作为检测信标. 另外, 通过硫代三聚氰酸和金纳米颗粒的自组装作用, 形成金纳米颗粒和硫代三聚氰酸的网状结构, 获得金纳米颗粒的选择性聚集, 实现信号扩增. 用此法检测目标p53野生型DNA, 最低检测限为2.24×10-17 mol/L, 同时进一步研究了该探针对p53野生型和一碱基错配的突变型的选择性.  相似文献   

16.
17.
Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the tumor suppressor proteins, such as Rb or p53. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-β-galactosidase (SA-β-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. p41-Arc has been known to be a putative regulatory component of the mammalian Arp2/3 complex, which is required for the formation of branched networks of actin filaments at the cell cortex. In this study, we demonstrate that p41-Arc can induce senescent phenotypes when it is overexpressed in human tumor cell line, SaOs-2, which is deficient in p53 and Rb tumor suppressor genes, implying that p41 can induce senescence in a p53-independent way. p41-Arc overexpression causes a change in actin filaments, accumulating actin filaments in nuclei. Therefore, these results imply that a change in actin filament can trigger an intrinsic senescence program in the absence of p53 and Rb tumor suppressor genes.  相似文献   

18.
We present an integrated approach for investigating the topology of proteins through native mass spectrometry (MS) and cross‐linking/MS, which we applied to the full‐length wild‐type p53 tetramer. For the first time, the two techniques were combined in one workflow to obtain not only structural insight in the p53 tetramer, but also information on the cross‐linking efficiency and the impact of cross‐linker modification on the conformation of an intrinsically disordered protein (IDP). P53 cross‐linking was monitored by native MS and as such, our strategy serves as a quality control for different cross‐linking reagents. Our approach can be applied to the structural investigation of various protein systems, including IDPs and large protein assemblies, which are challenging to study by the conventional methods used for protein structure characterization.  相似文献   

19.
Although human telomerase catalytic subunit (TERT) has several cellular functions including telomere homeostasis, genomic stability, cell proliferation, and tumorigenesis, the molecular mechanism underlying anti-apoptosis regulated by TERT remains to be elucidated. Here, we show that ectopic expression of TERT in spontaneously immortalized human fetal fibroblast (HFFS) cells, which are a telomerase- and p53-positive, leads to increases of cell proliferation and transformation, as well as a resistance to DNA damage response and inactivation of p53 function. We found that TERT and a mutant TERT (no telomerase activity) induce expression of basic fibroblast growth factor (bFGF), and ectopic expression of bFGF also allows cells to be resistant to DNA-damaging response and to suppress activation of p53 function under DNA-damaging induction. Furthermore, loss of TERT or bFGF markedly increases a p53 activity and DNA-damage sensitivity in HFFS, HeLa and U87MG cells. Therefore, our findings indicate that a novel TERT-bFGF axis accelerates the inactivation of p53 and consequent increase of resistance to DNA-damage response.  相似文献   

20.
A series of chromone Schiff base complexes were prepared and analytically as well as spectroscopically characterized. The ligand was found to act as a monobasic tridentate ligand bonded covalently or coordinatively to the metal ion via deprotonated hydroxyl group, azomethine nitrogen atom and carbonyl oxygen atom of antipyrine moiety. Both electronic spectra and magnetic measurements indicated an octahedral or a distorted octahedral geometry around the metal ions for all metal complexes except the nickel complex, which had a tetrahedral geometry. In addition, the ability of the newly prepared compounds to activate the tumour suppressor p53 in cancer cells was studied, with zinc and copper complexes showing promising activities for p53 ubiquitination compared with diphenylimidazole (reference drug).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号