首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Tetraphenylporphyrin]Co(II) (CoTPP), has been thought to be impossible to polymerize, is deposited on glassy carbon electrode (GCE) by anodic oxidation. The poly{[tetraphenylporphyrin]Co(II)} (pCoTPP) films are obtained through aryl–aryl couplings. Compared with monomeric CoTPP, the polymers provide higher density of active sites for oxygen-reduction reaction (ORR) in 0.5 M H2SO4. A synergistic effect between cobalt and porphyrin rings is observed. Results of the rotating disk electrode measurement indicate that ORR in the pCoTPP film mainly occurs through a four-electron pathway to form H2O. The pCoTPP-modified GCE exhibits good stability in an acidic medium.  相似文献   

2.
《Electroanalysis》2018,30(3):436-444
Electrocatalysts perform a key role in increasing efficiency of the oxygen reduction reaction (ORR) and as a result, efforts have been made by the scientific community to develop novel and cheap materials that have the capability to exhibit low ORR overpotentials and allow the reaction to occur via a 4 electron pathway, thereby mimicking as close as possible to traditionally utilised platinum. In that context, two different types of carbon nanodots (CNDs) with amide (CND‐CONH2) and carboxylic (CND‐COOH) surface groups, have herein been fabricated and shown to exhibit excellent electrocatalytic activity towards the ORR in acid and basic media (0.1 M H2SO4 and 0.1 M KOH). CND surface modified carbon screen‐printed electrodes allow for a facile electrode modification and enabling the study of the CNDs electrocatalytic activity towards the ORR. CND‐COOH modified SPEs are found to exhibit improved ORR peak current and reduced overpotential by 21.9 % and 26.3 %, respectively compared to bare/unmodified SPEs. Additionally, 424 μg cm−2 CND‐COOH modified SPEs in oxygenated 0.1 M KOH are found to facilitate the ORR via a near optimal 4 (3.8) electron ORR pathway. The CNDs also exhibited excellent long‐term stability and tolerance with no degradation being observed in the achievable current with the ORR current returning to the baseline level within 100 seconds of exposure to a 1.5 M solution of methanol. In summary, the CND‐COOH could be utilised as a cathodic electrode for PEMFCs offering greater stability than a commercial Pt electrode.  相似文献   

3.
《Electroanalysis》2006,18(16):1564-1571
The work details the electrocatalysis of oxygen reduction reaction (ORR) in 0.5 M H2SO4 medium on a modified electrode containing a film of polyaniline (PANI) grafted multi‐wall carbon nanotube (MWNT) over the surface of glassy carbon electrode. We have fabricated a novel modified electrode in which conducting polymer is present as connected unit to MWNT. The GC/PANI‐g‐MWNT modified electrode (ME) is fabricated by electrochemical polymerization of a mixture of amine functionalized MWNT and aniline with GC as working electrode. Cyclic voltammetry and amperometry are used to demonstrate the electrocatalytic activity of the GC/PANI‐g‐MWNT‐ME. The GC/PANI‐g‐MWNT‐ME exhibits remarkable electrocatalytic activity for ORR. A more positive onset potential and higher catalytic current for ORR are striking features of GC/PANI‐g‐MWNT‐ME. Rapid and high sensitivity of GC/PANI‐g‐MWNT‐ME to ORR are evident from the higher rate constant (7.92×102 M?1 s?1) value for the reduction process. Double potential chronoamperometry and rotating disk and rotating ring‐disk electrode (RRDE) experiments are employed to investigate the kinetic parameters of ORR at this electrode. Results from RDE and RRDE voltammetry demonstrate the involvement of two electron transfer in oxygen reduction to form hydrogen peroxide in acidic media.  相似文献   

4.
In this study, we present the facile formation of platinum nanoparticles (Pt-NPs) on reduced graphite oxide (rGO) (Pt-NP@rGO) by microwave-induced heating of the organometallic precursor ((MeCp)PtMe3 in different tunable aryl alkyl ionic liquids (TAAIL). In the absence of rGO, transmission electron microscopy (TEM) reveals the formation of dense aggregates of Pt-NPs, with primary particle sizes of 2 to 6 nm. In contrast, in the Pt-NP@rGO samples, Pt-NPs are homogeneously distributed on the rGO, without any aggregation. Pt-NP@rGO samples are used as electrode materials for oxygen reduction reaction (ORR), which was assessed by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrochemical surface area (ECSA) and mass-specific activity (MA) increase up to twofold, compared with standard Pt/C 60%, making Pt-NP@rGO a competitive material for ORR.  相似文献   

5.
A mesoporous MnCo2O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2O4 exhibits both Co3O4‐like activity for oxygen evolution reaction (OER) and Mn2O3‐like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV‐ and CoII‐rich surface. The electrode material can be obtained on large‐scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2O4 could be used in metal–air batteries and/or other energy devices.  相似文献   

6.
Carbon-supported metallophthalocyanine catalysts, composed of a transition central metal M (M = Co, Mn, Ni, Fe) in the phthalocyanine ring, were synthesized in this work. As cathodic reaction in a fuel cell, the oxygen reduction reaction (ORR) was investigated in alkaline medium with linear scanning voltammetry at the surface of these electrocatalysts deposited onto a rotating disk electrode (RDE). It was found that the number of electrons transferred depended on the nature of the metallic cation in the catalyst. Evidences provided with Koutecky-Levich approach showed that iron phthalocyanine (FePc) exhibited the better electrocatalytic ability toward the ORR with four electrons exchanged and low activation overpotential. Among these different as-prepared materials, MnPc and FePc led to a four-electron pathway, while CoPc and NiPc proceeded by a two-electron route. The latter reaction process was also determined with a rotating ring-disk electrode (RRDE), which allowed the determination of hydrogen peroxide formed as O2 reduction intermediate in a small amount, i.e., less than 1.2 %.  相似文献   

7.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

8.
Overpotential for oxygen reduction reaction (ORR) at Au electrode is reported to be reduced by 0.27 V by the modification with boron nitride nanosheet (BNNS) but oxygen is reduced only to H2O2 by 2-electron process at Au electrode. Here we demonstrate that the decoration of BNNS with gold nanoparticles (AuNP) not only reduces the overpotential for ORR further by ca. 50 mV, but also opens a 4-electron reduction route to water. Both rotating disk electrode experiments with Koutecky–Levich analysis and rotating ring disk electrode measurements show that more than 50% of oxygen is reduced to water via 4-electron process at Au–BNNS/Au electrode while less than 20 and 10% of oxygen are reduced to water at the BNNS/Au and bare Au electrodes, respectively. Theoretical analysis of free energy profiles for ORR at the BN monolayer with and without Au8 cluster placed on Au(111) shows significant stabilization of adsorbed oxygen atom by the Au8 cluster, opening a 4-electron reduction pathway.  相似文献   

9.
For the first time, cobalt particles were electrodeposited on the surface of manganese oxides by cyclic voltammetry (CV) from an aqueous solution of 0.1 M Na2SO4 containing 5 mM CoSO4, and then the samples obtained were characterized by scanning electron microscopy (SEM) and energy dispersive X‐ray analysis (EDAX), respectively. And then, the as‐prepared Co/MnO2‐coated graphite electrode was employed to the oxygen reduction reaction (ORR). Interestingly, the reduction peak potential of ORR on a Co/MnO2‐modified graphite electrode was positively shifted for about 100 mV as compared with that on a MnO2‐modified graphite electrode, indicating that the electrocatalysis of Co/MnO2 composite towards ORR is superior to that of pure MnO2.  相似文献   

10.
以聚芳酰胺-多壁碳纳米管混合物为载体,利用漆酶表面氨基与聚芳酰胺主链端羧基的共价偶联以及碳纳米管与漆酶间的疏水作用,构筑了具有较高稳定性和电催化活性的漆酶修饰电极.并对该固酶修饰电极的固酶量、酶活力、电化学行为及其电催化氧还原的性能进行了表征.对漆酶分子具有亲和力的聚芳酰胺芳环结构及聚芳酰胺端羧基与漆酶表面氨基的共价偶联避免了漆酶的脱落和变性.而碳纳米管与聚芳酰胺的混合使得该三维修饰电极具有良好的电子导电性,并成功地实现了漆酶的氧化还原活性位与电极之间的直接电荷转移,这一点可由在0.73和0.38V附近观察到漆酶的T1和T2(漆酶的T1,T2铜活性位的形式电位分别为0.78和0.39V(vsNHE))铜活性位的两对氧化还原峰确认.漆酶的担载量为56.0mg·g-1,具有电化学活性的漆酶占总担载漆酶量的68%.在pH=4.4磷酸盐缓冲溶液中,该修饰电极上氧气还原的起始电位为0.55V,其对氧气的米氏常数KM为55.8μmo·lL-1,对氧气的检测限为0.57μmo·lL-1.在4℃下保存两个月后能实现直接电荷转移的漆酶量仅下降了14%左右而氧还原超电势提高了约50mV.结果表明该修饰电极有望用作酶基生物燃料电池的阴极和电流型氧气传感器.  相似文献   

11.
Aiming at a better understanding of correlations between the activity and selectivity of Au electrodes in the oxygen reduction reaction (ORR) under controlled transport conditions, we have investigated this reaction by combined electrochemical and in situ FTIR measurements, performed in a flow cell set-up in an attenuated total reflection (ATR) configuration in acid and alkaline electrolytes. The formation of incomplete reduction products (hydrogen peroxyde/peroxyls) was detected by a collector electrode, the onset of OHad formation was probed by bulk CO oxidation. Using an electroless-deposited, annealed Au film on a Si prism as working electrode and three different electrolytes for comparison (sulfuric acid, perchloric acid, sodium hydroxide solution), we could derive detailed information on the anion adsorption behavior, and could correlate this with the ORR characteristics. The data reveal pronounced effects of the anions and the pH on the ORR characteristics, indicated e. g., by a grossly different activity and selectivity for the 4-electron pathway to water/hydroxyls, with the onset ranging from ca. 1.0 V in alkaline electrolyte to 0.6 V in sulfuric acid electrolyte, and the selectivity for the 4-electron pathway ranging from 100 % (alkaline electrolyte, low overpotentials) to 40 % (acidic electrolytes, alkaline electrolyte at high overpotentials). In contrast, the effect of the ORR on the anion adsorption characteristics is small. Anion effects as well as correlations between anion adsorption and ORR are discussed.  相似文献   

12.
To accelerate the kinetics of the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells, ultrafine Pt nanoparticles modified with trace amounts of cobalt were fabricated and decorated on carbon black through a strategy involving modified glycol reduction and chemical etching. The obtained Pt36Co/C catalyst exhibits a much larger electrochemical surface area (ECSA) and an improved ORR electrocatalytic activity compared to commercial Pt/C. Moreover, an electrode prepared with Pt36Co/C was further evaluated under H2-air single cell test conditions, and exhibited a maximum specific power density of 10.27 W mgPt?1, which is 1.61 times higher than that of a conventional Pt/C electrode and also competitive with most state-of-the-art Pt-based architectures. In addition, the changes in ECSA, power density, and reacting resistance during the accelerated degradation process further demonstrate the enhanced durability of the Pt36Co/C electrode. The superior performance observed in this work can be attributed to the synergy between the ultrasmall size and homogeneous distribution of catalyst nanoparticles, bimetallic ligand and electronic effects, and the dissolution of unstable Co with the rearrangement of surface structure brought about by acid etching. Furthermore, the accessible raw materials and simplified operating procedures involved in the fabrication process would result in great cost-effectiveness for practical applications of PEMFCs.  相似文献   

13.
Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)2) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)2 with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e and 4e reactions, occurring simultaneously, to quietly 4e reaction with the increasing chloride ion concentration.  相似文献   

14.
Oxygen reduction reaction (ORR) has been studied on the low index planes of Pd modified with a monolayer of Pt (Pt/Pd(hkl)) in 0.1 M HClO4 with the use of hanging meniscus rotating disk electrode. The activity for ORR on bare Pd(hkl) electrode depends on the surface structure strongly, however, voltammograms of ORR on Pt/Pd(hkl) electrodes do not depend on the crystal orientation. The specific activities of Pt/Pd(hkl) electrodes at 0.90 V (RHE) are higher than that on Pt(1 1 0) which has the highest activity for ORR in the low index planes of Pt. The mass activity on Pt/Pd(hkl) electrode is 7 times as high as a commercial Pt/C catalyst.  相似文献   

15.
Anthraquinone groups were electrochemically grafted to glassy carbon (GC) electrodes via methylene linker to study the oxygen reduction reaction (ORR) in alkaline medium. Two different anthraquinone derivatives, 2-bromomethyl-anthraquinone or 2-chloromethyl-anthraquinone, were used to modify the GC electrode surface. Several modification conditions encompassing potential cycling and electrolysis at a fixed potential were employed in order to vary the surface concentration of MAQ groups (Γ MAQ) and to study the dependence of the O2 reduction behaviour on electrografting procedure. Cyclic voltammetry confirmed the presence of anthraquinone moieties attached to the GC electrode and Γ MAQ varied in the range of (0.5–2.4)?×?10?10 mol cm?2. Oxygen reduction was studied on MAQ-modified GC electrodes of various surface coverage using the rotating disc electrode (RDE) and rotating ring-disc electrode (RRDE) methods. The RDE and RRDE results of O2 reduction reveal that GC/MAQ electrodes show rather similar electrocatalytic behaviour towards the ORR yielding hydrogen peroxide as the final product.  相似文献   

16.
Time-resolved SERRS spectroscopy was applied to elucidate the mechanism of the reduction process of a heptylviologen monocation radical film to a neutral species on Ag electrode surfaces under various conditions. The film deposited on Ag electrodes at −0.65 V (vs. Ag/AgCl) consists of dimers, (HV+.)2. On application of a step potential from −0.65 to −1.2 V, the radical dimer is converted to a neutral species, HV0. The time-resolved spectra measured as a function of time after application of the step potential indicates that on the electrode immersed in KBr solutions (0.3 and 3 mol l−1) the radical dimer is at first converted to an intermediate state, which is a surface complex of a monocation radical monomer and a Br ion (the radical monomer in a type B state), and then reduced to the neutral species. The time-resolved spectra proved also the existence of a disproportionation reaction, i.e. 2HV+. (type B) → HV2+ + HV0. The increase in the KBr concentration (0.3 → 3 mol l−1) stabilizes the intermediate surface complex, causing an appreciable decrease in the reduction rate from (HV+.)2 to HV0. The reduction process on a silver electrode in 0.3 mol l−1 Na2SO4 consists of two reaction paths; one is a direct conversion from (HV+)2 to HV0 and another is a path through a radical monomer, which gives SERRS features appreciably different from those of type B. The first process proceeds much faster than that on the electrode in the KBr solutions.  相似文献   

17.
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords “silica”, “electrocatalysts”, “ORR”, “OER”, “HER”, “HOR”, “CO2RR”, “batteries”, and “supercapacitors”. The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.  相似文献   

18.
A rotating cylinder porous electrode (RCPE) of reticulated vitreous carbon (RVC) matrix was used for oxygen reduction reaction (ORR) in H2SO4 solutions. Cyclic voltammetry and hydrodynamic voltammetric techniques were used for electrochemical characterization of the ORR. Cyclic voltammograms in stationary solutions showed better performance of the anodically oxidized RVC (for periods of 1 and 5 min) for the ORR than the untreated RVC in which the first scan (ORR) after the surface treatment was of no utility, and the second scan was presented here. The hydrodynamic voltammograms obtained at the treated RCPE gave well-defined limiting current plateau with positively shifted onset potential as compared with the untreated (plain) RVC electrode. The analysis of the limiting current data on RCPE and the determination of a limiting current enhancement factor α enabled us to quantify the enhancement extent exerted by the anodic oxidation treatment. An enhancement factor of up to ∼3 was obtained at the RCPE electrode anodically oxidized for 5 min. It was found that the α slightly decreased with the rotation speed depending on the extent of anodic oxidation of RVC. This was attributed to the different mode of mass transfer (diffusion) to the interior of the micropores with different microstructure resulting from different extent of anodic oxidation. X-ray photoelectron spectroscopic and scanning electron microscopic measurements helped us to characterize the anodically oxidized RVC surface.  相似文献   

19.
对于碱性燃料电池的阴极反应,开发具有优异催化性能的新型催化剂至关重要.本工作采用一种简单的热解方法合成了硼、氮掺杂的二硫化钼(B,N-MoS2)材料并将其应用于氧还原(ORR)电催化分析.通过循环伏安法(CV)与线性扫描伏安法(LSV)等电化学分析方法,采用旋转盘电极(RDE)与旋转环盘电极(RRDE)等技术测试了该材...  相似文献   

20.
Multibranched gold (Au) nanocomposite materials encapsulated by poly(o-phenylenediamine) (PoPD) (Au@PoPD) were synthesized in a Nafion polymer film through the electroless synthetic route. The micro-heterogeneous structured Nafion film acted as a reaction vessel and as the template for the formation of Au@PoPD nanocomposite materials leading to the formation of highly uniform distribution of high density of the polymer-gold nanocomposite material. The formation of Au@PoPD nanomaterials at the GP/Nf surface was scrutinized by recording in situ absorption spectra and was characterized. The formation of the (111) plane of gold was dominant at the Au@PoPD nanocomposite. The ratio of the benzenoid and quinoid units of the PoPD (ca. 1.65) observed for the Au@PoPD confirmed that the micro-heterogeneous structure of Nf film acted as a reaction vessel and as template for the formation of Au@PoPD nanocomposite material. Both PoPD and Au at the Au@PoPD nanocomposite showed electrochemical activities at the GC/Nf-Au@PoPD modified electrode. The electrocatalytic activity of the GC/Nf-Au@PoPD modified electrode was studied for oxygen reduction reaction (ORR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号