共查询到20条相似文献,搜索用时 17 毫秒
1.
双酚A(bisphenol A,BPA)是一种内分泌干扰物,会对机体多方面产生不良影响,包括生殖系统、神经系统、胚胎发育等.因此,在水环境中如何检测和去除BPA显得尤为重要.实验研究表明,氧化石墨烯(graphene oxide,GO)对BPA具有优异的吸附去除性能,但在分子层面的吸附机制尚不清楚.分子动力学模拟,能提供BPA在GO表面的动态吸附过程以及吸附构象等详细信息,可以弥补实验的不足.本文利用GROMACS分子动力学模拟软件,系统模拟了BPA在含GO的水溶液中的吸附过程,并计算了吸附自由能.结果显示:所有的BPA均被吸附在GO两侧,通过分析BPA的吸附构象以及与GO的相互作用,发现π-π疏水作用对吸附起主导作用,且显示出很好的稳定性,而静电和氢键作用增加了GO的吸附能力.通过自由能计算,BPA在GO表面的结合能达30 k J/mol,远大于水分子的5 k J/mol.这些结果进一步证实GO对BPA具有很强的吸附能力以及GO作为吸附剂在水溶液中去除BPA的可行性. 相似文献
2.
根据吉木萨尔凹陷芦草沟组储层特征,利用分子动力学方法研究了不同润湿性石英狭缝表面吸附页岩油的特征.用甲基和羟基按照-CH3:-OH=100:0、 75:25、 50:50、 25:75、 0:100修饰石英表面以构造不同润湿性的表面,并构建10 nm裂缝模型,以研究其对C15H32页岩油的吸附特性.研究结果表明,通过调节修饰官能团的比例,成功构造了润湿角为122.0°、 116.5°、 92.5°、 82.6°、 65.4°的吸附模型.由于水分子与石英表面间的相互作用能变化剧烈,水分子在修饰的石英表面的吸附是导致润湿角不断改变的主要原因.(C15H32在甲基改性石英表面的第一吸附层峰值是羟基改性的石英表面的1.37倍,说明润湿性会导致吸附特征发生明显改变.)通过对游离态页岩油含量的计算发现,随着羟基改性程度的增加,游离态页岩油质量占比从68%逐渐增长到83.7%,说明表面的润湿性改造有利于页岩油的解吸进而提高页岩油开发能力. 相似文献
3.
通过分子动力学模拟了入射能量对H原子与晶Si表面相互作用的影响. 通过模拟数据与实验数据的比较, 得到H原子吸附率随入射量的增加 呈先增加后趋于平衡的趋势. 沉积的H原子在Si表面形成一层氢化非晶硅薄膜, 刻蚀产物(H2, SiH2, SiH3和SiH4)对H原子吸附率趋于平衡有重要影响, 并且也决定了样品的表面粗糙度. 当入射能量为1 eV时, 样品表面粗糙度最小. 随着入射能量的增加, 氢化非晶硅薄膜中各成分(SiH, SiH2, SiH3)的量以及分布均有所变化.
关键词:
分子动力学
吸附率
表面粗糙度
氢化非晶硅薄膜 相似文献
4.
高温下蒙脱石的膨胀特性在核废料深部封存、二氧化碳封存及页岩气开发等应用中有着重要影响,但相关机理尚不明确.本工作使用分子动力学模拟为技术手段计算5 MPa和298—500 K等条件下,1.40—4.00 nm晶面间距(d)的一系列饱和钙蒙脱石的膨胀压力.以模拟所得的数值结果为依据,基于水化效应、双电层效应和离子关联效应等模型推演膨胀压力随温度与d的变化规律,并与相应的实验数据进行对比.模拟结果表明,当d较小时,因为高温会弱化水化力的强度,钙蒙脱石膨胀压力震荡的幅度降低,同时水化力作用的d的范围减小.当d较大时,因为高温强化离子关联效应,膨胀压力降低,同时双电层力的作用的d的范围增加.在较高温度和较大d时,膨胀压力为收缩力,阻碍膨胀.这些膨胀压力的变化规律与前期钠蒙脱石体系的研究类似.然而,通过对比两种蒙脱石体系的模拟结果,发现两种体系存在显著的差异—钙蒙脱石比钠蒙脱石更难膨胀到较大的d.此模拟结果与前人实验观测的结果相符.我们进一步将此差异归于钙蒙脱石的离子关联效应要远大于钠蒙脱石.有别于分子模拟中对于离子关联效应的精确描述,连续化的Poisson-Boltzmann方程因为忽略了离子关联效应,从而无法表达出与两种体系模拟结果都相吻合的膨胀压力变化规律. 相似文献
5.
高温下蒙脱石的膨胀特性在核废料深部封存、二氧化碳封存及页岩气开发等应用中有着重要影响,但相关机理尚不明确.本工作使用分子动力学模拟为技术手段计算5 MPa和298—500 K等条件下,1.40—4.00 nm晶面间距(d)的一系列饱和钙蒙脱石的膨胀压力.以模拟所得的数值结果为依据,基于水化效应、双电层效应和离子关联效应等模型推演膨胀压力随温度与d的变化规律,并与相应的实验数据进行对比.模拟结果表明,当d较小时,因为高温会弱化水化力的强度,钙蒙脱石膨胀压力震荡的幅度降低,同时水化力作用的d的范围减小.当d较大时,因为高温强化离子关联效应,膨胀压力降低,同时双电层力的作用的d的范围增加.在较高温度和较大d时,膨胀压力为收缩力,阻碍膨胀.这些膨胀压力的变化规律与前期钠蒙脱石体系的研究类似.然而,通过对比两种蒙脱石体系的模拟结果,发现两种体系存在显著的差异—钙蒙脱石比钠蒙脱石更难膨胀到较大的d.此模拟结果与前人实验观测的结果相符.我们进一步将此差异归于钙蒙脱石的离子关联效应要远大于钠蒙脱石.有别于分子模拟中对于离子关联效应的精确描述,连续化的Poisson-Boltzmann方程因为忽略了离子关联效应,从而无法表达出与两种体系模拟结果都相吻合的膨胀压力变化规律. 相似文献
6.
用分子动力学方法研究了单个吸附原子在Ag(001)表面的自扩散现象,其中相互作用势采用了更适合于表面特性的表面嵌入势(SEAM势).观察到了丰富的扩散机制,包括简单交换机制、复杂交换机制、跳跃机制及一种新的渡越机制.提出了复杂交换机制的另一种竞争交换模型.对所有扩散机制的统计结果表明,吸附原子与表面原子间的交换扩散占主导.另外,由吸附原子扩散的Arrhenius行为及能量弛豫方法计算得到了简单交换机制的激活能为0.39eV,它小于跳跃机制的激活能0.47eV.
关键词: 相似文献
7.
采用嵌入原子势,使用分子动力学方法对金属Al不同低指数晶面的表面熔化现象分别进行了模拟.分析了熔化过程中样品结构组态的变化.模拟结果表明对于不同的自由表面,表面熔化呈现出明显的各向异性行为.Al(110)面在低于熔点的温度之下发生预熔化;(111)与(001)面都出现过热现象.与(111)面不同,(001)面发生过热现象时表面原子层为类液层,而(111)面仍然保持很好的晶格结构,即预熔化的Al(001)面在高于熔点的温度下,仍可以在很长的时间内处于相对稳定的亚稳态.由模拟得到Al的热力学熔点为950 K左右,与实验值基本符合.
关键词:
分子动力学
表面熔化
过热 相似文献
8.
采用分子动力学方法模拟单个增原子Ag,Pd和Cu在Cu(001)表面上的扩散过程.通过对自扩散和异质扩散过程中扩散机制的观察,统计三种不同的增原子在不同温度下的扩散频率,拟合给出扩散势垒和扩散频率的指前因子,并与扩散势垒的静力学计算结果进行比较.结果表明:在800 K以下时,三种增原子均以简单跳跃机制为主扩散,与衬底不互溶的Ag增原子的跳跃频率最大,与衬底互溶的Pd增原子的跳跃频率最小.同质增原子与异质增原子的扩散频率和温度的关系均较好地符合Arrhenius公式,由Arrhenius公式拟合给出的三种不同增原子的扩散势垒与表面结构和增原子表面结合能有关.Pd和Cu增原子从跳跃机制为主向交换机制为主的转换温度分别在825和937 K左右.
关键词:
表面扩散
分子动力学模拟 相似文献
9.
用分子动力学模拟研究石墨狭缝中甲烷的吸附,考察狭缝宽度和温度对甲烷吸附的影响.模拟发现甲烷在石墨狭缝中出现分层现象,吸附层中甲烷具有类液特征,第一吸附层内甲烷中总有两个氢原子的连线与另外两个氢原子的连线分别位于平行于狭缝壁的两个平面内,游离层中甲烷呈现气体的特征;碳原子间的平均作用势说明吸附层中甲烷分子间结合能力大于游离层,吸附态是甲烷在石墨狭缝中的主要赋存形式之一;伦敦力以及由吸附层净电荷产生的电场力是甲烷吸附和分层的主要原因;甲烷的吸附量随狭缝宽度增大或温度升高而减少,当狭缝宽度小于16.46Å时,甲烷仅以吸附形态存在.甲烷在第一吸附层中的扩散能力最弱、游离层中最强,甲烷扩散系数随狭缝宽度的增大或温度的升高而增大. 相似文献
10.
11.
利用Brenner(#2)半经验多体相互作用势和分子动力学模拟方法研究荷能的C2在金刚石(111)表面的化学吸附过程.模拟300 K时,初始入射动能分别为1,20,30 eV的C2团簇从6个不同位置轰击金刚石(111)表面,观察到C2团簇在金刚石(111)表面形成的吸附结构,表面C原子键的打开以及C2团簇与表面C原子成键等物理过程,并讨论不同入射位置和入射能量对沉积团簇的结构特性的影响.结果表明,对于表面不同的局部构型,C2团簇发生不同的碰撞过程,C2团簇入射能量的提高有利于成键过程的发生,从原子尺度模拟沉积机制. 相似文献
12.
13.
采用嵌入原子方法的原子间相互作用势,利用分子动力学方法模拟了六种贵金属原子(Ni,Pd,Pt,Cu,Ag,Au)分别在Pt(111)表面低能沉积的动力学过程.结果表明:随着入射能量从0.1eV升高到200eV,基体表面原子是按层迁移的,沉积过程对基体表面的影响和沉积原子在基体表层的作用均存在两个转变能量(ET1≈5eV,ET2≈70eV).当入射能量低于5eV时,基体表面几乎没有吸附原子和空位形成,沉积原子在基体表层几乎没有注入产生;当入射能量在5—70eV范围内时,沉积原子在基体表层有注入产生,其注入深度小于两个原子层,即为亚注入,此时吸附原子主要由基体表层原子形成,基体表面第三层以下没有空位形成;当入射能量高于70eV时,沉积原子的注入深度大于两个原子层,将会导致表面以下第三层形成空位,并且空位产额随入射能量的升高而急剧增加.基于分子动力学模拟的结果,对低能沉积作用下的薄膜生长以及最优沉积参数的选择进行了讨论. 相似文献
14.
15.
采用Mishin镶嵌原子势,通过分子动力学方法模拟了金属Cu 的(110)表面在不同应变下的熔 化行为,分析了表面熔化过程中系统结构组态和能量的变化以及固液界面迁移情况.金属Cu 的(110)表面在低于热力学熔点的温度下发生预熔化,准液体层的厚度随温度升高而增加.当 温度高于热力学熔点时,固液界面的移动速度与温度成正比,外推得到热力学熔点为1380K ,与实验结果1358K吻合良好.应变效应(包括拉伸和压缩)导致热力学熔点降低,并促进表 面预熔化进程.在相同温度条件下,准液体层的厚度随应变绝对值的增加而增大.应变效应导 致的固相自由能增加是金属Cu(110)表面热稳定性下降的主要因素,且表面应力和应变方向 的异同也会影响表面预熔化的进程.
关键词:
表面预熔化
热力学熔点
表面应力
分子动力学 相似文献
16.
微小液滴在不同能量表面上的润湿状态对于准确预测非均相核化速率和揭示界面效应影响液滴增长微观机理具有重要意义. 通过分子动力学模拟, 研究了纳米级液滴在不同能量表面上的铺展过程和润湿形态. 结果表明, 固液界面自由能随固液作用强度增加而增加, 并呈现不同液滴铺展速率和润湿特性. 固液作用强度小于1.6的低能表面呈现疏水特征, 继续增强固液作用强度时表面变为亲水, 而固液作用强度大于3.5的高能表面上液体呈完全润湿特征. 受微尺度条件下非连续、非对称作用力影响, 微液滴气液界面存在明显波动, 呈现与宏观液滴不同的界面特征. 统计意义下, 微小液滴在不同能量表面上铺展后仍可以形成特定接触角, 该接触角随固液作用强度增加而线性减小, 模拟结果与经典润湿理论计算获得的结果呈现相似变化趋势. 模拟结果从分子尺度为核化理论中的毛细假设提供了理论支持, 揭示了液滴气液界面和接触角的波动现象, 为核化速率理论预测结果和实验测定结果之间的差异提供了定性解释. 相似文献
17.
采用EAM镶嵌原子作用势,通过经典的分子动力学模拟方法研究了不同冷却速度下的金属Ni纳米线的凝固行为,并给出了纳米线在凝固区域的结构演变过程.利用键对分析技术研究了在不同冷却速度下体系中的原子团簇在降温过程中的变化情况.研究表明,纳米线的凝固起始于表面原子,并且随着冷却速度的降低,Ni纳米线的微观结构从非晶态过渡到多壳螺旋结构,最终达到稳定的面心立方结构.多壳螺旋结构同时具有确定的结晶温度和长程无序、短程有序的非晶结构的特征.
关键词:
纳米线
凝固行为
分子动力学
键对分析 相似文献
18.
用分子动力学方法模拟了Si(001)表面。提出利用二维偶对相关函数分析方法研究表面层和近表面层原于的行为。硅原子间的相互作用势采用含有两体和三体相互作用的Stilli-anger-Weber势。模拟温度为300K,模拟结果和二维偶对相关函数的分析表明:表面层的大部分原子发生成键,键长为0.24nm;近表面层的其它几层原子仍保持原平面晶格构型。另外,对表面层和近表面层原子的弛豫问题也进行了模拟研究。
关键词: 相似文献
19.
分子动力学模拟研究方解石表面润湿性反转机理 总被引:1,自引:0,他引:1
利用分子动力学模拟技术从分子尺度探究方解石表面润湿性反转机理.首先,研究方解石表面润湿性反转过程;而后,从原油分子-方解石表面与原油分子-原油分子/水分子相互作用两个方面系统揭示方解石表面润湿性反转机理.结果:(1)水分子能够驱离方解石表面弱吸附的非极性分子造成润湿性的改变,但不能驱离强吸附的极性分子使润湿性反转难以实现;(2)原油分子极性越强与方解石表面相互作用越强,极性分子与方解石表面之间主要为静电力,非极性分子与方解石表面之间主要为范德华力;(3)原油分子极性越相近分子之间的相互作用越强,分子极性相差越大分子之间的相互作用越弱.非极性分子之间主要是范德华力,极性分子之间主要是静电力;(4)原油分子在方解石表面和水分子的共同作用下形成乙酸-吡啶-水-甲苯-己烷的稳定吸附序列.本研究为靶向提高采收率技术的设计与应用提供理论基础. 相似文献
20.
为探讨胞嘧啶(Cytosine,Cy)在基底银表面的吸附特性和规律,采用表面增强拉曼散射(SERS)光谱对其吸附行为进行分析,并结合量子化学密度泛函理论(DFT)/B3LYP计算方法对Cy分子的常规拉曼光谱(NRS)及Cy与Ag团簇吸附的SERS光谱进行计算,与测定结果进行比对且对其拉曼峰进行系统指认及归属,理论计算结合实测值探讨了Cy在基底Ag上的增强效应和吸附行为。考察了Cy分子在Ag纳米粒子上的不同吸附时间、浓度、pH等条件对SERS光谱的影响及优化,发现pH影响最大,在中性和强碱性条件下的增强效应明显优于酸性。Cy分子存在2种不同的异构体和3种不同的存在形态,并随酸度变化相互转化而达动态平衡。基于Cy在不同pH时的形态分布和相应的SERS变化规律,结合DFT算得的Cy分子中的电荷分布及在银基底表面的吸附机制,详细探讨了酸碱对Cy分子的SRES光谱影响的内因和吸附机理,指出在中性和弱碱性时,是Cy中的N3和O与Ag形成配位吸附;在pH大于11时,N与Ag形成配位吸附,而O与Ag形成共价吸附。 相似文献