首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

2.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

3.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

4.
The complex trans-[HFe(PNP)(dmpm)(CH(3)CN)]BPh(4), 3, (where PNP is Et(2)PCH(2)N(CH(3))CH(2)PEt(2) and dmpm is Me(2)PCH(2)PMe(2)) can be successively protonated in two steps using increasingly strong acids. Protonation with 1 equiv of p-cyanoanilinium tetrafluoroborate in acetone-d(6) at -80 degrees C results in ligand protonation and the formation of endo (4a) and exo (4b) isomers of trans-[HFe(PNHP)(dmpm)(CH(3)CN)](BPh(4))(2). The endo isomer undergoes rapid intramolecular proton/hydride exchange with an activation barrier of 12 kcal/mol. The exo isomer does not exchange. Studies of the reaction of 3 with a weaker acid (anisidinium tetrafluoroborate) in acetonitrile indicate that a rapid intermolecular proton exchange interconverts isomers 4a and 4b, and a pK(a) value of 12 was determined for these two isomers. Protonation of 3 with 2 equiv of triflic acid results in the protonation of both the PNP ligand and the metal hydride to form the dihydrogen complex [(H(2))Fe(PNHP)(dmpm)(CH(3)CN)](3+), 11. Studies of related complexes [HFe(PNP)(dmpm)(CO)](+) (12) and [HFe(depp)(dmpm)(CH(3)CN)](+) (10) (where depp is bis(diethylphosphino)propane) confirm the important roles of the pendant base and the ligand trans to the hydride ligand in the rapid intra- and intermolecular hydride/proton exchange reactions observed for 4. Features required for an effective proton relay and their potential relevance to the iron-only hydrogenase enzymes are discussed.  相似文献   

5.
The purpose of this work was to characterise supercritical hydrofluorocarbons (HFC) that can be used as solvents for electrodeposition. The phase behaviour of CHF(3), CH(2)F(2), and CH(2)FCF(3) containing [NBu(n)(4)][BF(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] was studied and the conditions for forming a single supercritical phase established. Although all three HFCs are good solvents for [NBu(n)(4)][BF(4)] the results show that the CH(2)F(2) system has the lowest p(r) for dissolving a given amount of [NBu(n)(4)][BF(4)]. The solubility of Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] in CH(2)F(2) was found to be unexpectedly high. Studies of the phase behaviour of CH(2)F(2) containing [NBu(n)(4)][BF(4)] and [Cu(CH(3)CN)(4)][BF(4)] showed that the copper complex was unstable in the absence of CH(3)CN. For CHF(3), [Cu(hfac)(2)] was more soluble and more stable than [Cu(CH(3)CN)(4)][BF(4)] and only increased the phase-separation pressure by a moderate amount. Studies of the conductivity of [NBu(n)(4)][B(C(6)F(5))(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)], [NR(f)Bu(n)(3)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] (R(f) = (CH(2))(3)C(7)F(15)), and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] were carried out in scCH(2)F(2). The results show that these salts are more conducting than [NBu(n)(4)][BF(4)] under the same conditions although the increase is much less significant than that reported in previous work in supercritical CO(2) + CH(3)CN. Consequently, either [NBu(n)(4)][BF(4)] or the corresponding BARF salts would be suitable background electrolytes for electrodeposition from scCH(2)F(2).  相似文献   

6.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

7.
The mixed-metal complex, [RhOs(CO)(4)(dppm)(2)][BF(4)] (1; dppm = micro-Ph(2)PCH(2)PPh(2)) reacts with diazomethane to yield a number of products resulting from methylene incorporation into the bimetallic core. At -80 degrees C the reaction between 1 and CH(2)N(2) yields the methylene-bridged [RhOs(CO)(3)(micro-CH(2))(micro-CO)(dppm)(2)][BF(4)] (2), which reacts further at ambient temperature to give the allyl methyl species, [RhOs(eta(1)-C(3)H(5))(CH(3))(CO)(3)(dppm)(2)][BF(4)] (4). At intermediate temperatures compounds 1 and 2 react with diazomethane to yield the butanediyl complex [RhOs(C(4)H(8))(CO)(3)(dppm)(2)][BF(4)] (3) by the incorporation and coupling of four methylene units. Compound 2 is proposed to be an intermediate in the formation of 3 and 4 from 1 and on the basis of labeling studies a mechanism has been proposed in which sequential insertions of diazomethane-generated methylene fragments into the Rh-C bond of bridging hydrocarbyl fragments occur. Reaction of the tricarbonyl species, [RhOs(CO)(3)(micro-CH(2))(dppm)(2)][BF(4)] with diazomethane over a range of temperatures generates the ethylene complex [RhOs(eta(2)-C(2)H(4))(CO)(3)(dppm)(2)][BF(4)] (7a), but no further incorporation of methylene groups is observed. This observation suggests that carbonyl loss in the formation of the above allyl and butanediyl species only occurs after incorporation of the third methylene fragment. Attempts to generate C(2)-bridged species by the reaction of 1 with ethylene gave no reaction, however, in the presence of trimethylamine oxide the ethylene adducts [RhOs(eta(2)-C(2)H(4))(CO)(3)(dppm)(2)][BF(4)] (7b; an isomer of 7a) and [RhOs(eta(2)-C(2)H(4))(2)(CO)(2)(dppm)(2)][BF(4)] (8) were obtained. The relationship of the above products to the selective coupling of methylene groups, and the roles of the different metals are discussed.  相似文献   

8.
A novel alkenylation reaction of pyridine is developed. Heating a cationic ruthenium vinylidene complex [CpRu(=C=CHR)(PPh(3))(2)]PF(6) in pyridine at 100-125 degrees C for 24 h affords (E)-2-alkenylpyridine. Initially, pyridine coordinates to ruthenium by displacement of one of the phosphine ligands. Then, [2 + 2] heterocycloaddition occurs to form a four-membered ruthenacyclic complex. Deprotonation of the beta-hydrogen affords a neutral pi-azaallyl complex. Protonolysis furnishes the product. As a result, a vinylidene group is inserted into the alpha C-H bond of pyridine. The alkenylation reaction is made catalytic in ruthenium by the use of (alkyn-1-yl)silane as the vinylidene source. Treatment of (alkyn-1-yl)trimethylsilane with pyridine in the presence of a cationic ruthenium complex [CpRu(PPh(3))(2)]PF(6) affords the corresponding (E)-2-alkenylpyridine in good yield in a regio- and stereoselective manner.  相似文献   

9.
The preparation of two new families of hexanuclear rhenium cluster complexes containing benzonitrile and phenyl-substituted tetrazolate ligands is described. Specifically, we report the preparation of a series of cluster complexes with the formula [Re(6)Se(8)(PEt(3))(5)L](2+) where L = benzonitrile, p-aminobenzonitrile, p-methoxybenzonitrile, p-acetylbenzonitrile, or p-nitrobenzonitrile. All of these complexes undergo a [2 + 3] cycloaddition with N(3)(-) to generate the corresponding [Re(6)Se(8)(PEt(3))(5)(5-(p-X-phenyl)tetrazol-2-yl)](+) (or [Re(6)Se(8)(PEt(3))(5)(2,5-p-X-phenyltetrazolate)](+)) cluster complexes, where X = NH(2), OMe, H, COCH(3), or NO(2). Crystal structure data are reported for three compounds: [Re(6)Se(8)(PEt(3))(5)(p-acetylbenzonitrile)](BF(4))(2)?MeCN, [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4))?CH(2)Cl(2), and [Re(6)Se(8)(PEt(3))(5)(2,5-p-aminophenyltetrazolate)](BF(4)). Treatment of [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4)) with HBF(4) in CD(3)CN at 100 °C leads to protonation of the tetrazolate ring and formation of [Re(6)Se(8)(PEt(3))(5)(CD(3)CN)](2+). Surprisingly, alkylation of the phenyl and methyl tetrazolate complexes ([Re(6)Se(8)(PEt(3))(5)(2,5-N(4)CPh)](BF(4)) and [Re(6)Se(8)(PEt(3))(5)(1,5-N(4)CMe)](BF(4))) with methyl iodide and benzyl bromide, leads to the formation of mixtures of 1,5- and 2,5-disubstituted tetrazoles.  相似文献   

10.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

11.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

12.
The highly electrophilic, 16-electron, coordinatively unsaturated [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex brings about the heterolytic activation of H(2)(g) and spontaneously generates HOTf. In addition, trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) and an unprecedented example of a phosphorous acid complex, [Ru(P(OH)(3))(dppe)(2)](2+), are formed. The [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex also cleaves the Si-H bond in EtMe(2)SiH in a heterolytic fashion, resulting in the trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) derivative.  相似文献   

13.
The synthesis and characterization of the novel hindered tripodal phosphine ligand P(CH(2)CH(2)CH(2)P(i)Pr(2))(3) (P(3)P(3)(iPr)) (1) are reported, along with the synthesis and characterization of ruthenium chloro and hydrido complexes of 1. Complexes [RuCl(P(3)P(3)(i)Pr)][BPh(4)] (2[BPh(4)]), RuH(2)(P(3)P(3)(i)Pr) (3), and [Ru(H(2))(H)(P(3)P(3)(iPr))][BPh(4)] (4[BPh(4)]) were characterized by crystallography. Complex 2 is fluxional in solution, and low-temperature NMR spectroscopy of the complex correlates well with two dynamic processes, an exchange between stereoisomers and a faster turnstile-type exchange within one of the stereoisomers.  相似文献   

14.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

15.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

16.
The transmetallation of the palladacyclopentadiene complex Pd{C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy) with the dicationic Pd(II) complex [Pd(bipy)(CH(3)CN)(2)][BF(4)](2) afforded a terminally σ-palladated diene complex [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy)(2)(CH(3)CN)(2)][BF(4)](2). It was revealed by X-ray crystallographic analysis that replacement of the acetonitrile ligands in a terminally σ-palladated diene complex with PPh(3) ligands resulted in the conformation change of the σ-palladated diene moiety from skewed s-cis to planar s-trans. Treatment of a bis-triphenylphosphine dipalladium complex [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2) with dimethoxyacetylene dicarboxylate (DMAD) (1 equiv.) in acetonitrile resulted in the insertion of DMAD to the Pd-Pd bond to afford [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)}(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2). Addition of the second DMAD gave the ylide-type complex [Pd(2){μ-η(2):η(3)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)(PPh(3))}(PPh(3))(2)(CH(3)CN)(3)][PF(6)](2) of which the structure was determined by X-ray crystallographic analysis.  相似文献   

17.
[Ag(UO(2))(3) (OAc)(9)][Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)] (, OAc = CH(3)COO(-)) crystallized from an ethanol solution and its structure was determined by IR spectroscopy, elemental analysis, (1)H NMR, (13)C NMR and X-ray crystallography; it is composed of [Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)](2+) cations and [Ag(UO(2))(3)(OAc)(9)](2-) anions in which triuranyl [(UO(2))(OAc)(3)](3) clusters are linked by the Ag ion.  相似文献   

18.
A novel heterobimetallic alkynyl-bridged complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)], 1, and its oxidized species, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 2, have been synthesized and their X-ray crystal structures determined. A related vinylidene complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond](H)C[double bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 3, has also been synthesized and characterized. The cyclic voltammogram of 1 shows a quasireversible reduction couple at -1.49 V (vs SCE), a fully reversible oxidation at -0.19 V, and a quasireversible oxidation at +0.88 V. In accord with the electrochemical results, density-functional theory calculations on the hydrogen-substituted model complex Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)H(5))(dHpe) (Cp = C(5)H(5), dHpe = H(2)P[bond](CH(2))(2)[bond]PH(2)) (1-H) show that the LUMO is mainly bipyridine ligand pi* in character while the HOMO is largely iron(II) d orbital in character. The electronic absorption spectrum of 1 shows low-energy absorption at 390 nm with a 420 nm shoulder in CH(2)Cl(2), while that of 2 exhibits less intense low-energy bands at 432 and 474 nm and additional low-energy bands in the NIR at ca. 830, 1389, and 1773 nm. Unlike the related luminescent rhenium(I)-alkynyl complex [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C[bond]H)], 4, complex 1 is found to be nonemissive, and such a phenomenon is attributed to an intramolecular quenching of the emissive d pi(Re) --> pi*(bpy) (3)MLCT state by the low-lying MLCT and LF excited states of the iron moiety. Interestingly, switching on of the luminescence property derived from the d pi(Re) --> pi*(bpy) (3)MLCT state can be demonstrated in the oxidized species 2 and the related vinylidene analogue 3 due to the absence of the quenching pathway.  相似文献   

19.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

20.
The new [N(CH(3))(4)][WSF(5)] salt was synthesized by two preparative methods: (a) by reaction of WSF(4) with [N(CH(3))(4)][F] in CH(3)CN and (b) directly from WF(6) using the new sulfide-transfer reagent [N(CH(3))(4)][SSi(CH(3))(3)]. The [N(CH(3))(4)][WSF(5)] salt was characterized by Raman, IR, and (19)F NMR spectroscopy and [N(CH(3))(4)][WSF(5)]·CH(3)CN by X-ray crystallography. The reaction of WSF(4) with half an aliquot of [N(CH(3))(4)][F] yielded [N(CH(3))(4)][W(2)S(2)F(9)], which was characterized by Raman and (19)F NMR spectroscopy and by X-ray crystallography. The WSF(5)(-) and W(2)S(2)F(9)(-) anions were studied by density functional theory calculations. The novel [W(2)OSF(9)](-) anion was observed by (19)F NMR spectroscopy in a CH(3)CN solution of WOF(4) and WSF(5)(-), as well as CH(3)CN solutions of WSF(4) and WOF(5)(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号