首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A multichannel chip containing 16 microchambers was developed for fast and sensitive immunoassays. In each chamber, antibody-functionalized nonmagnetic beads were applied as the solid phase to capture target antigens. Four types of IgGs (human, rabbit, chicken, and mouse) could be detected simultaneously by our combining this microchip with a sandwich immunoassay technique. A three-layer chip structure was investigated for integration of multiple processes, including washing, immune reaction, and detection, in one microchip. Moreover, the proposed chip design could improve batch-to-batch repeatability and avoid interferences between different channels without the preparation of complex microvalves. The total operation time of this system was less than 30 min, with a desirable detection limit of 0.2 pg/mL. The results indicate that the microfluidic platform is promising for the immunoassay of multiple clinical biomarkers.

Graphical abstract

  相似文献   

2.

The i-motif is a biologically relevant non-canonical DNA structure formed by cytosine-rich sequences. Despite the importance of the factors affecting the formation/stability of such a structure, like pH, cation type and concentration, no systematic study that simultaneously analysed their effect on the i-motif in vitro has been carried out so far. Therefore, here we report a systematic study that aims to evaluate the effect of these factors, and their possible interaction, on the formation of an i-motif structure. Our results confirm that pH plays the main role in i-motif formation. However, we demonstrate that the effect of the cation concentration on the i-motif is strictly dependent on the pH, while no significant differences are observed among the investigated cation types.

Graphical abstract

  相似文献   

3.

In this label-free surface-enhanced Raman scattering (SERS) study of genomic DNA, we demonstrate that the cancer-specific DNA methylation pattern translates into specific spectral differences. Thus, DNA extracted from an acute myeloid leukemia (AML) cell line presented a decreased intensity of the 1005 cm−1 band of 5-methylcytosine compared to normal DNA, in line with the well-described hypomethylation of cancer DNA. The unique methylation pattern of cancer DNA also influences the DNA adsorption geometry, resulting in higher adenine SERS intensities for cancer DNA. The possibility of detecting cancer DNA based on its SERS spectrum was validated on peripheral blood genomic DNA samples from n = 17 AML patients and n = 17 control samples, yielding an overall classification of 82% based on the 1005 cm−1 band of 5-methylcytosine. By demonstrating the potential of SERS in assessing the methylation status in the case of real-life DNA samples, the study paves the way for novel methods of diagnosing cancer.

Graphical abstract

  相似文献   

4.
Qu  Qi  Lv  Yaying  Liu  Lingling  Row  Kyung Ho  Zhu  Tao 《Analytical and bioanalytical chemistry》2019,411(28):7489-7498

Hydrophilic and hydrophobic deep eutectic solvents (DESs) as “green” solvents were applied in this study for the microextraction of environmental samples. A series of DESs (five hydrophilic and three hydrophobic) were synthesized and characterized by Fourier transform infrared spectroscopy. Physicochemical property parameters of eight DESs including water solubility, density, conductivity, and freezing point were assessed. Compared with the performance of five hydrophilic DESs in water phase, the three hydrophobic DESs were more suitable for application in dispersive liquid-liquid microextraction for the determination of sulfonamides in water sample. In dispersive liquid-liquid microextraction process, analytical parameters including type and volume of extraction solvent, extraction time, and pH of water sample were investigated. Under optimum conditions, 60 μL of hydrophobic DESs was used for extraction for 2 min in pH = 7.0 sample. The linear ranges were 0.05–5.0 μg/mL for the four sulfonamides with the correlation coefficients in the range of 0.9991–0.9999. The limits of detection were in the range of 0.0005–0.0009 μg/mL and the limits of quantification were in the range of 0.0019–0.0033 μg/mL. The recoveries of the analytes of the proposed method for the spiked samples were 80.17–93.5%, with the relative standard deviation less than 6.31%. The results indicated that three hydrophobic DESs showed commendable performance for extraction of sulfonamides, and hydrophobic DES-based microextraction method was successfully applied for monitoring sulfonamides in water samples.

Graphical abstract

  相似文献   

5.
He  Yu  Wang  Shuo  Wang  Junping 《Analytical and bioanalytical chemistry》2019,411(28):7481-7487

Folic acid (FA) is an essential vitamin in humans, and thus, rapid, accurate, and sensitive methods for its quantification in different biological samples are needed. This work describes a novel, simple, and effective dual-emission fluorescence nanoprobe for FA detection and quantification. The probe was covalently linked to amino-modified orange quantum dots (QDs) and carboxyl-modified blue graphene quantum dots (GQDs). The resulting material exhibited two emission peaks at 401 and 605 nm upon excitation at 310 nm. The probe had good selectivity and sensitivity toward FA with an exceptionally low detection limit (LOD = 0.09 nM). This probe was effectively used to quantify FA in animal serum samples. The method has potential utility for FA analysis in different types of biological samples.

Graphical abstract

  相似文献   

6.
Li  Fangyuan  Guo  Dan  Kang  Lin 《Analytical and bioanalytical chemistry》2019,411(21):5555-5561

G-quadruplexes have been widely researched as new targets for cancer treatment owing to their non-canonical structure and crucial role in biological processes. Although attention has been paid to the development of selective G-quadruplex ligands, few studies have focused on the binding affinity of stereoisomers towards G-quadruplex, which will be conducive to support the optimal design of G-quadruplex ligands in future studies. Here, tetrandrine and isotetrandrine were used to study the binding affinity and difference of stereoisomers towards G-quadruplex structures. The results showed that tetrandrine had a high possibility of binding to the N-myc and Bcl-2 G-quadruplexes through hydrogen bonding, whereas the possibility of binding of isotetrandrine was low and it seemed to have no possibility of forming hydrogen bonds. Our study shows that optical isomerism of ligand molecules has an important effect on G-quadruplex recognition, which is helpful for the design of G-quadruplex ligands in future studies.

Graphical abstract

  相似文献   

7.

A biomass nitrogen and sulfur codoped carbon dots (NS-Cdots) was prepared by a simple and clean hydrothermal method using leek, and was employed as efficient fluorescent probes for sensitive detection of organophosphorus pesticides (OPs). The leek-derived NS-Cdots emitted blue fluorescence, but was quenched by H2O2. Due to acetylcholinesterase/choline oxidase–based cascade enzymatic reaction that produces H2O2 and the inhibition effect of OPs on acetylcholinesterase activity, a NS-Cdots-based fluorescence “off-on” method to detect OPs-dichlorvos (DDVP) was developed. More sensitivity and wider linear detection range were achieved from 1.0 × 10−9 to 1.0 × 10−3 M (limit of detection = 5.0 × 10−10 M). This developed method was applied to the detection of DDVP in Chinese cabbage successfully. The average recoveries were in the range of 96.0~104.0% with a relative standard deviation of less than 3.3%. In addition, the NS-Cdots fluorescent probes were also employed successfully in multicolor imaging of living cells, manifesting that the NS-Cdots fluorescent probes have great application potential in agricultural and biomedical fields.

Graphical Abstract

  相似文献   

8.

Evaluation of post-translational modifications of protein molecules is important for both basic and applied biomedical research. Mass spectrometric quantitative studies of modifications, which do not change the mass of the protein, such as isomerization of aspartic acid, do not necessarily require the use of isotope-labelled standards. However, the accurate solution of this problem requires a deep understanding of the relationship between the mole fractions of the isomers and the peak intensities in the mass spectra. In previous studies on the isomerization of aspartic acid in short beta-amyloid fragments, it has been shown that calibration curves used for such quantitative studies often have a non-linear form. The reason for the deviation in the shape of the calibration curves from linearity has not yet been established. Here, we propose an explanation for this phenomenon based on a probabilistic model of the fragmentation process and present a general approach for the selection of fragments that can be used for quantitative studies of the degree of isomerization.

Graphical Abstract

  相似文献   

9.

Testosterone in human serum is commonly tested in clinical laboratories using immunoassay methods as well as liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. To standardize and ensure the accuracy of the measurement results, reference procedures with higher metrological order are required. A simple measurement procedure based on one-step liquid-liquid extraction (LLE) and liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) was developed for total testosterone in human serum. The procedure involved serum spiked with 13C3-testosterone, equilibration for 2 h, and extraction with an organic solvent. Testosterone certified reference material (CRM) was used as the calibration standard to ensure the traceability to the International System of Units (SI). Testosterone in serum CRMs from the National Institute for Standards and Technology (NIST) and LGC were used to validate the accuracy of the newly developed method. The deviations of the obtained values from the NIST and LGC certified values ranged from −0.55% to 0.45%. Similarly, the coefficient of variations (CVs) of the replicate measurements were in the range of 0.55% and 0.78%, respectively. The relative expanded uncertainties were comparable with those of the certified materials. The newly developed LC-IDMS/MS procedure demonstrated adequate trueness and precision, and was simple to perform. The method can be used for value assignment of testosterone in external quality assessment (EQA) materials as well as certification of CRMs in the future.

Graphical abstract

  相似文献   

10.

Starting from simple graphite flakes, an electrochemical sensor for sunset yellow monitoring is developed by using a very simple and effective strategy. The direct electrochemical reduction of a suspension of exfoliated graphene oxide (GO) onto a glassy carbon electrode (GCE) surface leads to the electrodeposition of electrochemically reduced oxide at the surface, obtaining GCE/ERGO-modified electrodes. They are characterized by cyclic voltammetry (CV) measurements and field emission scanning electron spectroscopy (FE-SEM). The GCE/ERGO electrode has a high electrochemically active surface allowing efficient adsorption of SY. Using differential pulse voltammetry (DPV) technique with only 2 min accumulation, the GCE/ERGO sensor exhibits good performance to SY detection with a good linear calibration for concentration range varying 50–1000 nM (R2 = 0.996) and limit of detection (LOD) estimated to 19.2 nM (equivalent to 8.9 μg L−1). The developed sensor possesses a very high sensitivity of 9 μA/μM while fabricated with only one component. This electrochemical sensor also displays a good reliability with RSD value of 2.13% (n = 7) and excellent reusability (signal response change < 3.5% after 6 measuring/cleaning cycles). The GCE/ERGO demonstrates a successful practical application for determination of sunset yellow in commercial soft drinks.

Graphical abstract

  相似文献   

11.
Yang  Tao  Dong  Mengqi  Cui  Juqing  Gan  Lu  Han  Shuguang 《Analytical and bioanalytical chemistry》2019,411(21):5455-5464

The preparation and fractionation of oligomeric proanthocyanidins (OPCs) are particularly important for the application of tannins in the biomedical field. By use of two different methods—gel filtration chromatography (GFC) with Sephadex LH-20 and progressive solvent precipitation—the OPCs were prepared and fractionated from mangosteen pericarp. The fractions were compared by reversed-phase and normal-phase high-performance liquid chromatography–electrospray ionization mass spectrometry and gel permeation chromatography. GFC directly purified oligomers (monomer to pentamer) with polydispersity values close to 1 and generated fractions with a higher level of total phenols (800.59 mg gallic acid equivalents per gram) but a lower yield (7.72%). Progressive solvent precipitation rapidly prepared and fractionated OPCs with a lower level of total phenols (609.57 mg gallic acid equivalents per gram) but a higher yield (24.74%) and higher polydispersity. Additionally, we found pronounced structural and quantitative differences among different tannin-rich fractions, and fractions obtained by GFC better reflected the structural diversity and complexity of OPCs from mangosteen pericarp. This study presents different ways of preparing and fractionating OPCs in the biomedical field.

  相似文献   

12.

While the targeted analysis of mercapturic acid (MA) metabolites in human urine is used to assess exposure to selected chemicals, this compound class has only rarely been addressed in non-target screening utilizing diagnostic neutral loss liquid chromatography tandem mass spectrometry (LC-MS/MS). Additionally, this type of analysis is severely affected by matrix effects (MEs) causing poor comparability of samples and distortion of signal intensities. However, MEs have been neglected in urinary MA non-target screening so far. Therefore, we developed a non-target screening method relying on neutral loss scanning for MAs using post column infusion of an isotope-labelled standard. For signal correction, we synthesized a structural analogue to MAs, N-acetyl-S-methyl-homocysteine-D3, lacking the characteristic neutral loss of the MAs. For method development, 16 structurally different model MA compounds and 20 spiked urine samples were used. Twelve out of the 16 model compounds could be analysed by the developed method. We found severe matrix effects (largely signal suppression) for the spiked model compounds, with only 34% of all peaks’ intensities changing by less than a factor of two. This could be compensated by the post column internal standard infusion with now 68% of all peaks’ intensities changing by less than a factor of two. For three compounds, an over-compensation was observed resulting in an increase of signal of up to a factor of 16. In the 20 urine samples, altogether 558 native MAs (between 74 and 175 per sample) could be detected after ME compensation. These results indicate that a large number of so far uncharacterized MAs are present in urine, which yield a potential for biomarker discovery and pattern characterisation.

Graphical Abstract

  相似文献   

13.

Identification and quantification of microplastics (MP) in environmental samples is crucial for understanding the risk and distribution of MP in the environment. Currently, quantification of MP particles in environmental samples and the comparability of different matrices is a major research topic. Research also focusses on sample preparation, since environmental samples must be free of inorganic and organic matrix components for the MP analysis. Therefore, we would like to propose a new method that allows the comparison of the results of MP analysis from different environmental matrices and gives a MP concentration in mass of MP particles per gram of environmental sample. This is possible by developing and validating an optimized and consistent sample preparation scheme for quantitative analysis of MP particles in environmental model samples in conjunction with quantitative 1H-NMR spectroscopy (qNMR). We evaluated for the first time the effects of different environmental matrices on identification and quantification of polyethylene terephthalate (PET) fibers using the qNMR method. Furthermore, high recovery rates were obtained from spiked environmental model samples (without matrix ~ 90%, sediment ~ 97%, freshwater ~ 94%, aquatic biofilm ~ 95%, and invertebrate matrix ~ 72%), demonstrating the high analytical potential of the method.

Graphical abstract

  相似文献   

14.
Hou  Rui  Li  Yilan  Sui  Zhigang  Yuan  Huiming  Yang  Kaiguang  Liang  Zhen  Zhang  Lihua  Zhang  Yukui 《Analytical and bioanalytical chemistry》2019,411(21):5351-5361

Exosomes are membrane-bound vesicles secreted by cells, and contain various important biological molecules, such as lipids, proteins, messenger RNAs, microRNAs, and noncoding RNAs. Emerging evidence demonstrates that proteomic analysis of exosomes is of great significance in studying metabolic diseases, tumor metastasis, immune regulation, and so forth. However, exosome proteomic analysis has high requirements with regard to the purity of collected exosomes. Here recent advances in the methods for isolating exosomes and their applications in proteomic analysis are summarized.

Graphical abstract

  相似文献   

15.
Zhang  Xue  Yu  Hong  Cai  Ya-qi 《Analytical and bioanalytical chemistry》2019,411(16):3427-3434

An ion chromatography and solid-phase extraction method has been applied for the separation and detection of morpholinium cations in environmental water samples. The water samples were purified and enriched by a UF-SCX sulfonic acid extraction column and eluted with 0.5 mol L−1 phosphoric acid/sodium dihydrogen phosphate buffer solution/55% methanol. The target compounds were separated on a carboxylic acid cation exchange column with 5.0 mmol L−1 methane sulfonic acid/2% acetonitrile as the mobile phase and direct conductivity detection. The method has been successfully applied to extract morpholinium cations from spiked water samples of Songhua River, Hulan River, East Lake, and Mopanshan Reservoir in China with the recoveries ranging from 75.0% to 98.3%. The relative standard deviations of intraday precision and interday precision are 2.1% and 5.9% or less, respectively. Using this method it is possible to preconcentrate water samples to 0.01–0.04 mg L−1. The results show that the method is applicable to detection of morpholinium ionic liquid cations in environmental water samples and provides a new approach for monitoring ionic liquids in environmental water.

The analysis procedure of morpholinium ionic liquids in environmental water samples.

  相似文献   

16.

This work reports on further development of an inhibition electrochemical sensor array based on immobilized bacteria for the preliminary detection of a wide range of organic and inorganic pollutants, such as heavy metal salts (HgCl2, PbCl2, CdCl2), pesticides (atrazine, simazine, DDVP), and petrochemicals (hexane, octane, pentane, toluene, pyrene, and ethanol) in water. A series of DC and AC electrochemical measurements, e.g., cyclic voltammograms and impedance spectroscopy, were carried out on screen-printed gold electrodes with three types of bacteria, namely Escherichia coli, Shewanella oneidensis, and Methylococcus capsulatus, immobilized via poly l-lysine. The results obtained showed a possibility of pattern recognition of the above pollutants by their inhibition effect on the three bacteria used. The analysis of a large amount of experimental data was carried out using an artificial neural network (ANN) programme for more accurate identification of pollutants as well as the estimation of their concentration. The results are encouraging for the development of a simple and cost-effective biosensing technology for preliminary in-field analysis (screening) of water samples for the presence of environmental pollutants.

Graphical abstract

  相似文献   

17.

In this work, a straightforward analytical approach based on headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was developed for the analysis of salivary volatile organic compounds without any prior derivatization step. With a sample volume of 500 μL, optimal conditions were achieved by allowing the sample to equilibrate for 10 min at 50 °C and then extracting the samples for 10 min at the same temperature, using a carboxen/polydimethylsiloxane fibre. The method allowed the simultaneous identification and quantification of 20 compounds in sample headspace, including short-chain fatty acids and their derivatives which are commonly analysed after analyte derivatization. The proof of applicability of the methodology was performed with a case study regarding the analysis of the dynamics of volatile metabolites in saliva of a single subject undergoing 5-day treatment with rifaximin antibiotic. Non-stimulated saliva samples were collected over 3 weeks from a nominally healthy volunteer before, during, and after antibiotic treatment. The variations of some metabolites, known to be produced by the microbiota and by bacteria that are susceptible to antibiotics, suggest that the study of the dynamics of salivary metabolites can be an excellent indirect method for analysing the gut microbiota. This approach is novel from an analytical standpoint, and it encourages further studies combining saliva metabolite profiles and gut microbiota dynamics.

Graphical abstract

  相似文献   

18.

Common gaseous fuels are mixtures of several components. As the properties of the fuels can vary with the composition, but combustion needs to be stable, reliable analytical methods are highly sought after. Raman spectroscopic methods have proved their suitability for the characterization of diverse gaseous mixtures. They have the potential to overcome existing limitations of established technologies, since they are fast, non-consumptive, and accurate. Here, we demonstrate a gas sensor based on fiber-enhanced Raman spectroscopy (FERS) for fuel gas monitoring. Online detection of all gas components, including alkanes, carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S), for varying concentration ranges from tens of vol% down to the ppm level enables a comprehensive characterization of the fuels. The developed sensor system features a pinhole assembly which sufficiently reduces the background signal from the fiber to enable the detection of C2–C4 alkanes occurring in low concentrations. Detection limits in the low ppm region were achieved for the minor components of fuel gases, which allow the online monitoring of necessary purification steps, e.g., for biogas. The obtained results indicate that fiber-enhanced Raman sensors have the potential for comprehensive online and onsite gas sensing for fuel gas quality control.

Graphical abstract

  相似文献   

19.
20.

We report on the successful application of carboxyl-rich plasma polymerized (PP) films as a matrix layer for bioreceptor immobilization in surface plasmon resonance (SPR) immunosensing. Composition and chemical properties of the carboxyl-rich PP films deposited from a mixture of maleic anhydride and acetylene were investigated. Changes in the films stored in air, water, and buffer were studied and the involved chemical changes were described. Performance in SPR immunosensing was evaluated on interactions of human serum albumin (HSA) with a specific monoclonal antibody. The comparison with the mixed self-assembled monolayer of mercaptoundecanoic acid and mercaptohexanol (MUA/MCH) and one of the most widely used surfaces for SPR, the 2D and 3D carboxymethylated dextran (CMD), was presented to show the efficacy of plasma polymerized matrix layers for biosensing. The PP film-based SPR immunosensor provided a similar detection limit of HSA (100 ng/mL) as MUA/MCH- (100 ng/mL) and 3D CMD (50 ng/mL)-based sensors. However, the response levels were about twice higher in case of the PP film-based immunosensor than in case of MUA/MCH-based alternative. The PP film surfaces had similar binding capacity towards antibody as the 3D CMD layers. The response of PP film-based sensor towards HSA was comparable to 3D CMD-based sensor up to 2.5 μg/mL. For the higher concentrations (> 10 μg/mL), the response of PP film-based immunosensor was lower due to inaccessibility of active sites of the immobilized antibody inside the flat PP film surface. We have demonstrated that due to its high stability and cost-effective straightforward preparation, the carboxyl-rich PP films represent an efficient alternative to self-assembled monolayers (SAM) and dextran-based layers in label-free immunosensing.

Graphical abstract

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号