首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new calorimeter designed for simultaneous measurements of heats and isotherms of gas adsorption and desorption systems is presented. It consists of a volumetric/manometric gas adsorption instrument, the adsorption vessel of which is placed within a second vessel filled with inert gas. This gas acts as a sensor, as not only its temperature but also its pressure is increased if heat is released from the adsorption vessel via the sensor gas to its thermostated surroundings. Indeed, the time integral of the sensor gas pressure signal turned out to be strongly related to the total heat released from the adsorption vessel.A basic theoretical equation of the measurement procedure is given. Results of numerous calibration measurements are presented. The question of what type and amount of sensor gas should be used to achieve high sensitivity of the instrument is discussed.Two examples of measurements of heats of adsorption and adsorption isotherms are given, namely adsorption of N2 on alumina oxide (CRM-BAM-PM-104) at 77 K and CO2 on zeolite Na13X and wessalite DAY both at 298 K.  相似文献   

2.
Single adsorption isotherms and differential enthalpies of adsorption of nitrogen were measured on a microporous-activated carbon at various temperatures. A new way for calculating the differential enthalpies of adsorption is presented, and the results obtained were compared to those obtained by the isosteric method derived from the equilibrium data using the Clausius?CClapeyron equation. The measurements were made thanks to a coupled thermostated calorimetric?Cmanometric apparatus which can be operated for pressures up to 2.5?MPa and temperatures from 303 to 423?K. This article provides experimental data which can be used for the adjustment of interaction potential in computational simulations for supercritical adsorption.  相似文献   

3.
4.
A new method for the determination of the micropore volume distribution function of activated carbons is presented. It is based on the treatment of pure gas adsorption isotherms by a theoretical model derived from the Hill-de Boer theory. Adsorption data (isotherms and heat curves) for carbon dioxide, ethane and ethylene on activated carbon (F30/470 CHEMVIRON CARBON) have been provided by a thermobalance coupled to a calorimeter (TG-DSC 111 SETARAM) at different temperatures (233, 273, 303 and 323 K) for pressures up to 100 kPa. Adsorption isotherms of carbon dioxide and ethane at 303 and 323 K have been used for the determination of the micropore volume distribution function of the activated carbon of interest. The knowledge of its structure has then allowed the simulation of adsorption isotherms and heats for the same adsorbates at the same temperatures as those experimentally studied. Similar calculations have been conducted for ethylene. Whatever the adsorbate (carbon dioxide and ethane used for the determination of the micropore volume distribution function or ethylene), the mean deviation between experimental and calculated isotherms does not exceed 4% at quasicritical and supercritical temperatures (303 and 323 K). In the same temperature conditions, discrepancies between calculation and experiment reach about 10% for adsorption heats. For both isotherms and heats, large discrepancies appear at low temperature (233 and 273 K). This method allows the determination of the micropore volume distribution function of activated carbons. The validity of the results is insured using several isotherms of several adsorbates and taking into account the calorimetric effect of the phenomenon. That is the reason why this method can also be seen as a new possible model for pure gas adsorption data prediction. This paper also presents a brief summary of the state of the art in this field.  相似文献   

5.
Aqueous 1,1,2-trichloroethene (TCE) adsorption isotherms were obtained on Ambersorb 563 and 572 adsorbents and Filtrasorb 400 granular activated carbon (GAC). The data for Ambersorb 563 adsorbent covers TCE concentrations from 0.0009 to 600 mg/L. The data for each adsorbent was fit to 15 isotherm equations to determine an optimum equation.The best equation for the TCE adsorption isotherms is the Dubinin-Astakov (DA) isotherm. The DA isotherm coefficients were used to estimate the TCE micropore volume and the adsorption potential distribution. For each adsorbent, the TCE micropore volume is equivalent to the N2 porosimetry micropore volume. The mean adsorption potential is 18.8, 13.0, and 8.9 kJ/mol, with coefficients of variation of 0.37, 0.53, and 0.67, for Ambersorb 563 and 572 adsorbents and Filtrasorb 400 GAC, respectively. Thus, Ambersorb 563 adsorbent has the most energetic and most homogeneous adsorption volume, while Filtrasorb 400 GAC has the least energetic and most heterogeneous adsorption volume. For these reasons, Ambersorb 563 adsorbent has the highest TCE capacity at low concentrations, whereas Filtrasorb 400 GAC has the highest TCE capacity at high concentrations. The performance of Ambersorb 572 adsorbent is generally intermediate to the other two adsorbents.  相似文献   

6.
Carbon dioxide adsorption isotherms by synthetic mordenite are determined over the ranges 10?5 atm<P<50 atm and ?77°C<T<+160°C, differential heats of adsorption calorimetrically measured over 10?5atm<P<l atm and ?77°C< T< + 120°C.Differential heat curves show two adsorption ranges with different energetic characteristics. At the transition a very marked maximum appears.The integral molar entropy and specific heat of adsorbed phase are calculated.Two methods for adsorbed phase density determination are proposed:(i) The first, straight from maximal adsorbed amount at 50 atm. where adsorption isotherms level out.(ii) The second, based on adsorption potential theory with an elementary graphical determination.When the adsorbed phase density is so determined, Dubinin's equation can be successfully applied.  相似文献   

7.
The adsorption of pure methane in activated carbon Ecosorb was studied by combining grand canonical ensemble Monte Carlo molecular simulations and an experimental approach based on a gravimetric device. Experimental and calculated adsorption isotherms of methane were determined in supercritical conditions at 303.15 and 353.15 K and pressures up to 10 MPa. The comparison between both experimental and estimated data proves the consistency of the methodology used in this work, starting from the characterization of the porous media in terms of pore size distribution, the determination of the experimental adsorption isotherms, and the final estimation of computational results through estimated isotherms determination. Moreover, additional differential enthalpy of adsorption calculations were compared with experimental values obtained by means of a manometric/calorimetric technique. The good agreement shows the strength and the originality of this paper by combining experimental and computational homemade results allowing a complete characterization of the activated carbon substrate and its methane storage capacity.  相似文献   

8.
Isotherms of excessive adsorption of N2 and Ar on three montmorillonite samples (natural sodium (NaMt) and ion-exchange pyridinium (PyMt) and polyhydroxyaluminum (PGAMt)) were measured in the pressure interval from 0.1 to 60 MPa and at temperatures 303, 343, 373, and 400 K. The results of measurements showed the inverse temperature dependence of the measured isotherms of excessive adsorption at elevated pressures and temperatures: for the isotherms at higher temperatures the amounts adsorbed exceed the values measured at lower temperatures. The deformation of montmorillonites with the temperature increase results in an increase in the adsorption volume of the adsorbent.  相似文献   

9.
In this work, it is described an innovative heat flux micro calorimeter Tian-Calvet type designed to measure adsorption heats and reactions as well as adsorption isotherms. It consists in an adsorption instrument for volumetric gases, which is coupled to the micro calorimeter. The changes in the pressure are monitored by means of high sensitivity and high precision pressure transducers. The micro calorimeter has thermo elements that work by a Seebeck effect, in a twin cells system. The cells are inside a box in which the temperature can be adjusted from 77 to 300 K. The sensitiveness of the calorimeter is established by applying a perfectly known electric work. The results corresponding to the electric calibration, the base line stability determination and the time constant in the equipment are shown.  相似文献   

10.
This study applied TAM air isothermal calorimeter to measure the adsorption enthalpies of DNA on eight colloidal fractions from permanent-charge and variable-charge soils. The adsorption of DNA on soil colloids was also examined by equilibrium adsorption analysis. The data evaluated from isotherms fitted by Langmuirean model revealed that the affinity of DNA for variable-charge soil colloids was higher than that for permanent-charge soil colloids. More tightly bound DNA molecules were observed on coarse clays and inorganic clays than on fine clays and organic clays, respectively. The adsorption enthalpies of DNA on permanent-charge soil colloids were higher than those on variable-charge soil colloids. DNA adsorption on organic clays is endothermic, whereas that on inorganic clays is exothermic. Dehydration and electrostatic repulsion were considered to cause the higher adsorption enthalpies of DNA with organic clays, while hydrogen bonding, ligand exchange and electrostatic attraction result in the lower DNA adsorption enthalpies on inorganic clays. The thermodynamic parameters presented in this study have important implication for providing further insight into mechanisms of the adsorption of DNA on soil particles.  相似文献   

11.
The adsorption of a cysteine enzyme, on mesoporous silica with high specific surface area synthesized by the sol-gel method, was studied in a heat flow calorimeter, to determine the energy involved in the adsorption process of the protein. The adsorption was carried out at a constant temperature of 30°C to avoid the denaturation of the enzyme. The observed results indicate that the obtained biomaterials (silica-enzyme) have possibilities for their application in several biotechnology processes. The heat of papain adsorption and the solid-enzyme (SiO2-Papain) interactions at different pH are presented.  相似文献   

12.
High pressure adsorption measurements for light gases on volumetric equipment are prone to error. Differential units reduce the sensitivity to leakage, gas compressibility, and temperature gradients, but remain highly sensitive to volume uncertainties, the calibration of which is difficult in the presence of low-density, microporous samples. Calibration error can be reduced using a high initial pressure differential and large calibration volume; however, systematic error is prevalent in the literature. Using both analytical and multivariate error analysis, we demonstrate that calibration of the differential unit with the differential pressure transducer significantly decreases volume sensitivity. We show that hydrogen adsorption to GX-31 superactivated carbon at 298 K and 80 bar can be measured with a 7 % error in measurement (i.e. within 0.05 wt% for a 100 mg sample), even when experimental volume calibration is determined only within ~1 %. This represents approximately a 2–7 fold increase in sensitivity relative to previous reports using differential measurements. We also provide a framework for optimizing the design of a volumetric adsorption unit. For virtually any system design, the improved differential methods offer a significant increase in precision relative to the conventional volumetric measurement (from 10- to over 250-fold, depending on the precision of the pressure transducer). This improvement further enhances advantages of the differential unit, in addition to advantages that arise for treating gas compressibility and temperature fluctuations.  相似文献   

13.
In this work, the binding between sodium oleate (SO), sodium laurate (SL), sodium dodecyl sulfate (SDS), and sodium dodecylphosphonate (SDP) and iron oxide nanoparticles was systematically investigated using isothermal titration calorimetry (ITC). Comparing the heat exchanged during the isothermal titration with the corresponding surfactant adsorption isotherm, in the cases of SO and SDP, a strong binding takes place at low surfactant concentrations. The binding enthalpy at this low surfactant concentrations depends on the type of surfactant anionic head group. For C12 surfactants, the phosphonate group produced the strongest endothermic binding, followed by the exothermic binding with the carboxylate group, followed by weak exothermic interaction with the sulfate group. For carboxylate surfactants, longer surfactant tails result in larger exothermic binding. Surfactants that exhibited large binding enthalpies also produced more stable suspensions. The Langmuir (L), Freundlich (F), and Langmuir–Freundlich (L–F) adsorption models were used to interpret the adsorption isotherms during the titration with sodium oleate. The L–F adsorption isotherm model was selected to calculate the heat of the formation of the SO monolayer and bilayer on the iron oxide nanoparticles. The L–F model reflects the finite or limited adsorption of the Langmuir model, but accounts for non-homogeneous adsorption of the Freundlich model that help account for surfactant self-assembly before and after adsorption. Coupling the adsorption model with the titration data is possible to calculate the real heat of adsorption of the surfactants on the metal oxide.  相似文献   

14.
Siddiq, M.A. and Lucas, K., 1984. Excess enthalpy of the system chloroform + carbon tetrachloride and a thermodynamic evaluation of its state dependence. Fluid Phase Equilibria, 16: 87–98.Excess molar enthalpies of the system chloroform + carbon tetrachloride have been measured over the entire concentration range at 283.15, 293.15, 303.15, 313.15 and 323.15 K using an isothermal high-pressure flow calorimeter. The effect of pressure was also studied by measuring excess enthalpies at 15 and 30 MPa along the 293.15, 313.15 and 323.15 K isotherms. The temperature dependence of the excess enthalpies was used to calculate vapour-liquid equilibria as a function of temperature. The results are excellent. Further evaluation of the temperature and pressure dependences of the excess enthalpy is discussed.  相似文献   

15.
The heat, equilibrium, and kinetics of adsorption of 1-ethoxy-2-propanol vapours on granulated activated carbon were determined simultaneously by a reaction calorimeter SETARAM C80 D at T=298.15 K at various relative vapour pressures (0.1< p/ps<0.8). The adsorption isotherm was correlated by the Freundlich equation. It was observed that the enthalpies of adsorption decrease slightly with increasing of the relative vapour pressure of the adsorptive. The rate of adsorption were calculated from analysis of the heat flux signals and it was found that the mass-transfer coefficient for 1-ethoxy-2-propanol vapours in granulated activated carbon increased with increasing relative vapour pressure of the adsorptive.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
A gravimetric apparatus is used to measure the excess adsorption at high pressure. The equipment consists of a Rubotherm magnetic suspension balance, which allows to measure also the density of the fluid. In order to obtain the excess adsorbed amount, the measured weight has to be corrected with a buoyancy term, for which the density of the adsorbing fluid has to be known at each experimental conditions. Therefore the homogeneity of density in the high-pressure cell plays a fundamental role in determining the accuracy of the measured excess adsorbed amounts. This paper is intended to show the impact of the actual approach to thermostating the unit on the density distribution of the adsorbing fluid inside the high-pressure cell. Namely, by changing the inlet position of the heating fluid, large differences in the measured excess adsorption are produced. The closer to the critical point of the fluid, the stronger are these differences. An optimum configuration for our measuring device has been found and it has been used to study the adsorption of carbon dioxide (CO2) on Filtrasorb 400 activated carbon at supercritical and near-critical conditions.  相似文献   

17.
The thermodynamic equations for the calculation of binary and ternary immersion data in excess formalism are presented. Immersion enthalpies and entropies of the n-hexane/n-octane, n-octane/n-tetradecane and n-hexane/n-tetradecane binary mixtures as well as the n-hexane/n-octane/n-tetradecane ternary mixture on activated carbon are calculated from the temperature dependence of adsorption isotherms. In order to evaluate the quality of the calculations, the calculated immersion enthalpies of the binary mixtures on activated carbon are compared with those that were measured calorimetrically. It is shown that phenomenological thermodynamics can be used successfully to predict calorimetric data on the basis of adsorption excess isotherms.  相似文献   

18.
In this study we present a global overview of the adsorption behavior of hexane isomers on MFI. With an experimental approach that couples a manometric technique with Near Infrared (NIR) spectroscopy, which has been recently developed, we did address adsorption kinetic properties of n-hexane, 2-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane, and their binary mixtures. The adsorption equilibrium properties of the binary mixtures were also assessed using the same technique. Whereas the adsorption isotherms and heats of adsorption for single components have been studied by a manometric technique coupled with a micro calorimeter. The differential heats of adsorption of n-hexane increase slightly with loading, on the other hand the heat of adsorption of branched hexanes exhibits a decrease with loading. The diffusion rates on MFI of n-hexane, 2-methylpentane and 2,3-dimethylbutane are in the same order of magnitude. However, the diffusion rate of 2,2-dimethylbutane is two orders of magnitude lower than rates of the other isomers. In the binary mixtures the components interact and the difference between the diffusion rates of the components decreases. The MFI zeolite presents equilibrium selectivity towards the less branched isomers. In conclusion, a separation process for linear/mono-branched alkanes + double-branched alkanes, has to be based on its equilibrium properties and not based on adsorption kinetics.  相似文献   

19.
Grand Canonical Monte Carlo simulations combined with adsorption measurements have been carried out to gain further insight into the CO2 adsorption process at the microscopic scale in both LiY and NaY faujasites at various temperatures. A new Li+−CO2 force field derived by ab initio calculations was validated by a reasonable agreement between the simulated isotherms and those obtained by experiments in a wide range of temperature (from 323 K to 473 K). In addition, the microscopic mechanisms of CO2 adsorption in both systems, consistent with the trends observed for the simulated differential enthalpies of adsorption as a function of the loading, were proposed. It was observed that two different types of adsorption behaviour exist for NaY and LiY at 323 K and 373 K, mainly caused by the significant more exposed position of the SII Na+ from the six-ring plane of the supercage compared to those occupied by the SII Li+, whereas at higher temperature, both faujasites exhibit the same flat profile for the differential enthalpy of adsorption as a function of loading.  相似文献   

20.
Time-resolved fluorescence quenching, self-diffusion measurements and calorimetric investigations have been used in order to investigate the effect of salt on aggregation in aqueous solutions and the adsorption onto silica gel of the zwitterionic surfactant N-dodecyl betaine (NDB).

The micelle aggregation number of NDB stays constant when the NDB or salt concentration increases but decreases with an increase of temperature. Evidence is presented for the binding of cations and anions to micellar aggregates. The degree of binding has been obtained for Na+, Ca2+ and Cl ions; it is always larger for the anion.

Enthalpies of micellization were obtained directly from calorimetric curves of NDB in dilution experiments. The observed decrease of the endothermic enthalpies of micellization with increasing temperature or salinity is attributed to a structural change in the water molecules around the alkyl chain of the free monomers.

The adsorption isotherms of NDB onto silica gel depend very little on temperature, and a plateau is reached near the CMC. At saturation, the adsorbed amount of NDB depends on the salt and follows the sequence NDB < (NDB + NaCl) < (NDB + CaCl2).

The exothermic differential molar enthalpies of adsorption demonstrate the same behaviour as the enthalpies of micellization with varying temperature or salinity. Adsorption onto silica gel depends on the NDB concentration, the salt concentration and temperature.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号