首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contamination by Brettanomyces is a frequent problem in many wineries that has a dramatic effect on wine aroma and hence its quality. The yeast Brettanomyces/Dekkera is involved in the formation of three important volatile ethylphenols—4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol—that transmit an unpleasant aroma to wine that has often been described as ‘medicinal’, ‘stable’ or ‘leather’. This study proposes an in situ derivatisation and headspace solid-phase microextraction– gas chromatography coupled to mass spectrometry method to determine the three ethylphenols in red Brettanomyces-tainted wines. The most important variables involved in the derivatisation (acetic anhydride and base concentration) and the extraction (extraction temperature and salt addition) processes were optimised by experimental design. The optimal conditions using 4 mL of wine in 20-mL sealed vials were 35 μL of acetic anhydride per millilitre of wine, 1 mL of 5.5% potassium carbonate solution and 0.9 g of sodium chloride and the extraction was performed with a divinylbenzene–carboxen–poly(dimethylsiloxane) fibre at 70 °C for 70 min. Then, the performance characteristics were established using wine samples spiked with the ethylphenols. For all compounds, the detection limits were below the odour threshold reported in the literature and they were between 2 and 17 μg L−1 for 4-ethylguaiacol and 4-ethylphenol, respectively. Intermediate precision (as relative standard deviation) was acceptable, with values ranging from 0.3 to 12.1%. Finally, the method was applied in the analysis of aged Brettanomyces-tainted wines.  相似文献   

2.
A fully automated procedure using alkaline hydrolysis and headspace solid-phase microextraction (HS-SPME), followed by on-fiber derivatization and gas chromatographic–mass spectrometric (GC–MS) detection has been developed for determination of cannabinoids in hemp food samples. After addition of a deuterated internal standard, the sample was hydrolyzed with sodium hydroxide and submitted to direct HS-SPME. After absorption of analytes for on-fiber derivatization, the fiber was placed directly into the headspace of a second vial containing N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), before GC–MS analysis. Linearity was good for 9-tetrahydrocannabinol (THC), cannabidiol, and cannabinol; regression coefficients were greater than 0.99. Depending on the characteristics of the matrix the detection limits obtained ranged between 0.01 and 0.17 mg kg–1 and the precision between 0.4 and 11.8%. In comparison with conventional liquid–liquid extraction this automated HS-SPME–GC–MS procedure is substantially faster. It is easy to perform, solvent-free, and sample quantities are minimal, yet it maintains the same sensitivity and reproducibility. The applicability was demonstrated by analysis of 30 hemp food samples. Cannabinoids were detected in all of the samples and it was possible to differentiate between drug-type and fiber-type Cannabis sativa L. In comparison with other studies relatively low THC concentrations between 0.01 and 15.53 mg kg–1 were determined.  相似文献   

3.
The complex aroma of wine is derived from many sources, with grape-derived components being responsible for the varietal character. The ability to monitor grape aroma compounds would allow for better understanding of how vineyard practices and winemaking processes influence the final volatile composition of the wine. Here, we describe a procedure using GC–MS combined with headspace solid-phase microextraction (HS-SPME) for profiling the free volatile compounds in Cabernet Sauvignon grapes. Different sample preparation (SPME fiber type, extraction time, extraction temperature and dilution solvent) and GC–MS conditions were evaluated to optimize the method. For the final method, grape skins were homogenized with water and 8 ml of sample were placed in a 20 ml headspace vial with addition of NaCl; a polydimethylsiloxane SPME fiber was used for extraction at 40 °C for 30 min with continuous stirring. Using this method, 27 flavor compounds were monitored and used to profile the free volatile components in Cabernet Sauvignon grapes at different maturity levels. Ten compounds from the grapes, including 2-phenylethanol and β-damascenone, were also identified in the corresponding wines. Using this procedure it is possible to follow selected volatiles through the winemaking process.  相似文献   

4.
A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 μm PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L−1 in water and close to ng (Sn) kg−1 in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME–GC–PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.  相似文献   

5.
Up to now the analysis of aqueous samples by ion mobility spectrometry is a challenge due to the lack of suitable sample introduction systems. But just the introduction of asymmetric field strengths leading to a higher selectivity and sensitivity, this technique is of growing interest for on-site analysis of contaminated water. In this work, first results for the preparation of a portable GC-DMS system are presented. A differential mobility spectrometer (DMS) with a 63Ni ionization source has been used as a detector for the gaschromatographic separation of benzene, toluene, ethylbenzene m-, o-, and p-xylene (BTEX) in water. Separation from the matrix and pre-concentration of the analytes was achieved by solid-phase microextraction (SPME). The influence of the different chromatographic parameters, extraction conditions and differential mobility spectrometry settings on the sensitivity and signal shape were investigated. Results of the optimization of the analytical method as well as analytical validation parameters such as method detection limit, limit of quantification and the repeatability are discussed. Additionally, the applicability of the method was demonstrated by the analysis of a real surface water sample.  相似文献   

6.
The aim of this study was to test and develop techniques for the detection and identification of volatile compounds released as degradation products by Baltic amber. During a preliminary investigation, the off-gassing of acidic volatiles was detected through the corrosion of lead coupons. The corrosive compounds released by the material were then identified as formic acid and acetic acid by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. During an advanced investigation, based on the use of artificial ageing to initiate degradation of model amber samples in different microclimates, the detected formic acid and acetic acid off-gassing appeared to be more intense in a dry environment with normal oxygen concentration. The release of formic and acetic acids by the amber was likely the result of radical reactions which should be investigated in further studies.  相似文献   

7.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

8.
Most water contaminations with volatile organic compounds (VOCs) are traceable to leaking underground fuel reservoirs, solvent storage vessels, agricultural practices, industrial residues, and deficient wastewater treatment and disposal. In order to perform effective monitoring of such organic micropollutants in a straightforward manner, a multiresidue method for the determination of 23 VOCs (trihalomethanes (THMs), BTEX and chlorinated solvents) in water has been developed using solid-phase microextraction (SPME) and capillary gas chromatography–mass spectrometry (GC–MS). This group includes also methyl-tert-butyl ether, epichlorhydrine, and vinyl chloride which present additional analytical difficulties. Three different fibres were assayed: 7-µm polydimethylsiloxane (PDMS), 100-µm PDMS, and 75-µm Carboxen-PDMS, and the extraction conditions were optimized. The best results for the majority of the analytes and mainly for those with the lowest signals were obtained using the Carboxen-PDMS fibre after 15 min of extraction in the headspace mode at a room temperature of 20 ± 2°C. The analytical sensitivity, linearity, precision, accuracy, and uncertainties have been studied for method validation in agreement with the international standard ISO/IEC 17025:2005. The limits of detection achieved with the proposed method (0.06–0.17 µg L?1) are adequate to determine the VOCs at the restrictive levels established by the European legislation. This was a decisive achievement to enable the analysis of all VOCs listed under the drinking-water directive in a single assay. The method exhibits performance capabilities suitable for routine analysis of VOCs in drinking-water by quality-control laboratories as enforced by EU Directives. The method is currently being used for this purpose, and participation in proficiency tests was assessed, with encouraging results.  相似文献   

9.
The application of ionic liquids (ILs) as nonderivatizing solvents for the pretreatment and regeneration of cellulose is a growing area of research. Here we report the development of a rapid and simple method for the determination of residual ethanol content in two hydrophilic ILs, 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate. The method utilizes headspace solid-phase microextraction coupled with gas chromatography at elevated extraction temperatures, resulting in rapid equilibration times. The effect of IL water content on the ethanol extraction efficiency is presented. Recovery experiments carried out in real samples gave recoveries ranging from 96.8 to 98.2%.  相似文献   

10.
Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatise sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography–mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L−1. The method also demonstrated good precision (repeatability: 3–7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L−1) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected from various locations in a drinking water distribution system. Some of the samples were shown to contain inorganic polysulfides, and their presence was associated with high sediment density in the system and the absence of disinfectant residual in the bulk water.  相似文献   

11.
Volatile organic compounds (VOCs) and odors in cattle rumen gas have been characterized by in-vivo headspace sampling by solid-phase microextraction (SPME) and analysis by gas chromatography–mass spectrometry–olfactometry (GC–MS–O). A novel device enabling headspace SPME (HS-SPME) sampling through a cannula was designed, refined, and used to collect rumen gas samples from steers. A Carboxen–polydimethylsiloxane (PDMS) fiber (85 μm) was used for SPME sampling. Fifty VOCs from ten chemical groups were identified in the rumen headspace. The VOCs identified had a wide range of molecular weight (MW) (34 to 184), boiling point (−63.3 to 292 °C), vapor pressure (1.05 × 10−5 to 1.17 × 102 Pa), and water solubility (0.66 to 1 × 106 mg L−1). Twenty-two of the compounds have a published odor detection thresholds (ODT) of less than 1 ppm. More than half of the compounds identified are reactive and have an estimated atmospheric lifetime of <24 h. The amounts of VFAs, sulfide compounds, phenolic compounds, and skatole, and the odor intensity of VFAs and sulfide compounds in the rumen gas were all higher after feeding than before feeding. These results indicate that rumen gases can be an important potential source of aerial emissions of reactive VOCs and odor. In-vivo sampling by SPME then GC–MS–O analysis can be a useful tool for qualitative characterization of rumen gases, digestion, and its relationship to odor and VOC formation. Figure Modified cannula for rumen gas sampling with SPME  相似文献   

12.
A method for the determination of 19 chlorophenols in industrial effluents samples using solid-phase microextraction (SPME) coupled to gas chromatography–mass spectrometry has been developed. Four kinds of different SPME fibres have been studied. Among them, the polyacrylate and carbowax®-divinylbenzene fibres were the most adequate. The extraction process was optimized by means of the experimental design, which allows the study of a large number of factors with a reasonable number of experiments. The optimized method allows the determination of the studied chlorophenols in complex matrices with a high organic content with detection limits down to 0.07?ng?mL?1 and RSD ranging from 4.4% to 13.8%. The recovery studies with spiked real effluent samples at low levels of chlorophenols ranged from 59.8% to 142.1% for the lowest level (0.5?ng?mL?1) and from 79.6% to 115.8% for the highest spiked level (2?ng?mL?1). These results show the suitability of the proposed method to monitor chlorophenols in complex samples. 2,4,5-TCP was detected at concentrations close to its limits of detection in effluents coming from an oil refinery.  相似文献   

13.
One-step in situ microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) followed by gas chromatography–mass spectrometry (GC–MS) analysis is presented as a fast and solvent-free technique to determine synthetic polycyclic musks in sewage sludge and sediment samples. Six synthetic polycyclic musks (galaxolide (HHCB), tonalide (AHTN), celestolide (ADBI), traseolide (ATII), cashmeran (DPMI) and phantolide (AHMI)) were selected in the method development and validation. The effects of extraction parameters for the quantitative extraction of these analytes by one-step MA-HS-SPME were systematically investigated. The dewatered solid sample mixed with 20-mL deionized water (containing 3 g of NaCl in a 40-mL sample-vial) was efficiently extracted by a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber placed in the headspace when the extraction slurry was microwave irradiated at 80 W for 5 min. The limits of detection (LODs) ranged from 0.04 to 0.1 ng/g, and the limits of quantification (LOQs) ranged from 0.1 to 0.3 ng/g (fresh weight). A preliminary analysis of sludge and sediment samples revealed that HHCB and AHTN were the two most commonly detected synthetic polycyclic musks; using a standard addition method, their total concentrations were determined to range from 0.3 to 10.9 ng/g (fresh weight) with relative standard deviation (RSD) ranging from 4% to 10%.  相似文献   

14.
The emission of low molecular weight compounds from recycled high-impact polystyrene (HIPS) has been investigated using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). Four released target analytes (styrene, benzaldehyde, acetophenone, and 2-phenylpropanal) were selected for the optimisation of the HS-SPME sampling procedure, by analysing operating parameters such as type of SPME fibre (polarity and operating mechanism), particle size, extraction temperature and time. 26 different compounds were identified to be released at different temperatures from recycled HIPS, including residues of polymerisation, oxidated derivates of styrene, and additives. The type of SPME fibre employed in the sampling procedure affected the detection of emitted components. An adsorptive fibre such as carbowax/polydimethylsiloxane (CAR/PDMS fibre) offered good selectivity for both non-polar and polar volatile compounds at lower temperatures; higher temperatures result in interferences from less-volatile released compounds. An absorptive fibre as polydimethylsiloxane (PDMS) fibre is suitable for the detection of less-volatile non-polar molecules at higher temperatures. The nature and relative amount of the emitted compounds increased with higher exposure temperature and smaller polymeric particle size. HS-SPME proves to be a suitable technique for screening the emission of semi-volatile organic compounds (SVOCs) from polymeric materials; reliable quantification of the content of target analytes in recycled HIPS is however difficult due to the complex mass-transfer processes involved, matrix effects, and the difficulties in equilibrating the analytical system.  相似文献   

15.
16.
A novel method based on the coupling of membrane-supported headspace single-drop microextraction with gas chromatography?mass spectrometry (GC–MS) is developed for the determination of chlorobenzenes in water samples. For the determination of five chlorobenzenes, a 15 μL toluene microdrop was placed inside the plastic membrane and exposed for 10 min for headspace extraction while stirring at 1000 rpm. The microdrop was then picked up by a microsyringe and directly injected into the injector block of the GC–MS instrument. Under the optimized operation conditions, the calculated calibration curves gave a high level of linearity for all targets with correlation coefficients range from 0.9945 to 0.9987. The limits of detection range from 0.01 to 0.05 μg/L and the RSDs for most of chlorobenzenes were below 7%. The method is simple, sensitive, and stable for single drop microextraction. Its applicability is demonstrated by the determination of chlorobenzenes in tap water samples.  相似文献   

17.
This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC–IT-MS–MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 μm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 °C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 μg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low μg/L levels. The new derivatization–HS-SPME–GC–IT-MS–MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure.  相似文献   

18.
19.
Benzene is classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC). The risk assessment for benzene can be performed by monitoring environmental and occupational air, as well as biological monitoring through biomarkers. The present work developed and validated methods for benzene analysis by GC/MS using SPME as the sampling technique for ambient air and breath. The results of the analysis of air in parks and avenues demonstrated a significant difference, with average values of 4.05 and 18.26 μg m−3, respectively, for benzene. Sampling of air in the occupational environment furnished an average of 3.41 and 39.81 μg m−3. Moreover, the correlations between ambient air and expired air showed a significant tendency to linearity (R 2 = 0.850 and R 2 = 0.879). The results obtained for two groups of employees (31.91 and 72.62 μg m−3) presented the same trend as that from the analysis of environmental air.  相似文献   

20.
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ~5?×?10?2 m2 or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ~1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ~1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号