首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Silicon wafers were implanted with 40 keV B+ ions (to doses of 1.2×1014 or 1.2×1015 cm–2) and 50 or 100 keV N+ ions (to doses from 1.2×1014 to 1.2×1015 cm–2). After implantations, the samples were furnace annealed at temperatures from 100 to 450 °C. The depth profiles of the radiation damages before and after annealing were obtained from random and channeled RBS spectra using standard procedures. Two damaged regions with different annealing behaviour were found for the silicon implanted with boron ions. Present investigations show that surface disordered layer conserves at the annealing temperatures up to 450 °C. The influence of preliminary boron implantation on the concentration of radiation defects created in subsequent nitrogen implantation was studied. It was shown that the annealing behaviour of the dual implanted silicon layers depends on the nitrogen implantation dose.The authors would like to thank the members of the INP accelerator staff for the help during the experiments. The work of two authors (V.H. and J.K.) was partially supported by the Internal Grant Agency of Academy of Science of Czech Republic under grant No. 14805.  相似文献   

3.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

4.
Silicon ions were implanted into the films of silicon oxide obtained by thermal oxidation of silicon wafers in a damp oxygen. Accumulation of the implantation dose was performed either in one step or cyclically in step-by-step mode, and after each stage of implantation the samples were annealed in a dry nitrogen. The second series of the samples differed from the first one by the formation of SiO2 matrix that included additional annealing in the air at 1100 °C for 3 h before ion implantation. X-ray absorption near edge structure (XANES) was obtained with the use of synchrotron radiation. Two absorption edges were observed in all of Si L2,3-spectra. One of them is related to elementary silicon while the other one-to silicon in SiO2. The fine structure of the first one indicates the formation of nanocrystalline silicon nc-Si in SiO2 matrix. Its atomic and electron structure depends on the technology of formation. For both series of samples, a cyclical accumulation of the total dose Φ=1017 cm−2 (for the total time of annealing—2 h) resulted in the appearance of more distinct structure in the range of absorption edge for the elementary silicon as compared with the case of single-step accumulation dose. In the more “dense” oxide of the samples from the second series, the probability of formation of silicon nanocrystals in a thin near-surface region of the implanted layer was reduced. These results can be interpreted with the account of the previously obtained photoluminescence, Raman scattering and electron microscopy data for these samples.  相似文献   

5.
刘显明  李斌成  黄秋萍 《中国物理 B》2010,19(9):97201-097201
An experimental study on the photocarrier radiometry signals of As+ ion implanted silicon wafers before and after rapid thermal annealing is performed. The dependences of photocarrier radiometry amplitude on ion implantation dose (1×1011--1×1016/cm2), implantation energy (20--140 keV) and subsequent isochronical annealing temperature (500--1100 du are investigated. The results show that photocarrier radiometry signals are greatly enhanced for implanted samples annealed at high temperature, especially for those with a high implantation dose. The reduced surface recombination rate resulting from a high built-in electric field generated by annealing-activated impurities in the pn junction is believed to be responsible for the photocarrier radiometry signal enhancement. Photocarrier radiometry is contactless and can therefore be used as an effective in-line tool for the thermal annealing process monitoring of the ion-implanted wafers in semiconductor industries.  相似文献   

6.
Silicon wafers were implanted with 40 keV B+ ions and then with 50 keV N+ or 100 keV Ar+ ions to doses from 1.2 x 1014 to 1.2 x 1015 cm–2. The implanted samples were studied using the Hall effect and standard van der Pauw methods. The dependences of the sheet resistivity and the sheet concentration of charge carriers on the annealing temperature in the range from 700 to 1300 K were obtained. Models describing the influence of additional implantation of nitrogen and argon ions on the process of boron electrical activation during annealing are proposed.  相似文献   

7.
Modulated PhotoReflectance (MPR) measurements on semiconductor wafers implanted with boron or silicon ions in the dose range 5×1010–5×1015 ions/cm2 are presented. Correspondingly, a one-dimensional theoretical multilayer model is established. In the theory, as the implant dose is lower than a critical value, the variation of the MPR signal is contributed mainly by the implanted defects and damages. However, when the dose is above the critical dose, the change of the MPR signal is chiefly due to the formation and growth of an amorphous layer. The theoretical results are in good agreement with those of experiments.  相似文献   

8.
Silicon ions are implanted into silicon oxide thin films obtained by the thermal oxidation of silicon wafers in wet oxygen. The implantation dose is accumulated either once or cyclically, and the samples are annealed in dry nitrogen every time after implantation. The second series of samples is prepared in a similar way, but the technology for obtaining the oxide films includes additional annealing at 1100°C in air for three hours. X-ray absorption near-edge structure (XANES) spectra are obtained using synchrotron radiation. In all the Si L 2,3 spectra, two absorption edges are observed, the first corresponding to elemental silicon, and the second corresponding to the SiO2 matrix. The fine structure of the first edge indicates that nanocrystalline silicon (nc-Si) can form in the SiO2 matrix, whose atomic and electronic structure depends on the technology of its formation. In both series, the cyclic accumulation of the total dose (Φ = 1017 cm?2) and the annealing time (2 h) gives rise to the most pronounced fine structure in the region of the absorption edge of elemental silicon. The probability of forming silicon nanocrystals decreases for the denser silicon oxide in the second series of samples.  相似文献   

9.
Carbon ions at 40 keV were implanted into (1 0 0) high-purity p-type silicon wafers at 400 °C to a fluence of 6.5 × 1017 ions/cm2. Subsequent thermal annealing of the implanted samples was performed in a diffusion furnace at atmospheric pressure with inert nitrogen ambient at 1100 °C. Time-of-flight energy elastic recoil detection analysis (ToF-E ERDA) was used to investigate depth distributions of the implanted ions. Infrared transmittance (IR) and Raman scattering measurements were used to characterize the formation of SiC in the implanted Si substrate. X-ray diffraction analysis (XRD) was used to characterize the crystalline quality in the surface layer of the sample. The formation of 3C-SiC and its crystalline structure obtained from the above mentioned techniques was finally confirmed by transmission electron microscopy (TEM). The results show that 3C-SiC is directly formed during implantation, and that the subsequent high-temperature annealing enhances the quality of the poly-crystalline SiC.  相似文献   

10.
唐海马  郑中山  张恩霞  于芳  李宁  王宁娟 《中国物理 B》2010,19(10):106106-106106
In order to improve the total-dose radiation hardness of the buried oxide of separation by implanted oxygen silicon-on-insulator wafers, nitrogen ions were implanted into the buried oxide with a dose of 1016 cm-2 , and subsequent annealing was performed at 1100°C. The effect of annealing time on the radiation hardness of the nitrogen implanted wafers has been studied by the high frequency capacitance-voltage technique. The results suggest that the improvement of the radiation hardness of the wafers can be achieved through a shorter time annealing after nitrogen implantation. The nitrogen-implanted sample with the shortest annealing time 0.5 h shows the highest tolerance to total-dose radiation. In particular, for the 1.0 and 1.5 h annealing samples, both total dose responses were unusual. After 300-krad(Si) irradiation, both the shifts of capacitance-voltage curve reached a maximum, respectively, and then decreased with increasing total dose. In addition, the wafers were analysed by the Fourier transform infrared spectroscopy technique, and some useful results have been obtained.  相似文献   

11.
Non-contact, non-intrusive Photo-Carrier Radiometry (PCR) was used for monitoring nano-depth junctions in industrial-grade silicon wafers. The silicon wafers were implanted with arsenic to the dose of 5E1014 cm-2. The junction depth was in the 30 nm to 100 nm range. Quantitative results for PCR sensitivity to the junction depth and implantation energies are presented. This laser-based carrier-wave technique monitors harmonically photo-excited and recombining carriers and shows great potential advantages for the characterization of multiple semiconductor processes such as ion implantation, ultra shallow junction (USJ) depth determination and other Si wafer process steps.  相似文献   

12.
In order to form silicon (Si)-on-insulator (SOI) layers with various thicknesses, oxygen implantation with doses between 1.0×1017/cm2 and 6.0×1017/cm2 and at energies between 40 and 240 keV has been carried out into 300 mm diameter (100)Si wafers at a temperature of 560 °C. After implantation, Si wafers are annealed in dry Ar mixed with 1% O2 at a temperature of 1350 °C for 4 h. The quality of buried oxide (BOX) layers and the microstructure in implanted layers before and after annealing is characterized by transmission electron microscopy. The results reveal that the appreciable number of threading dislocations (TDs) is generated in SOI layers implanted at energies above 200 keV under the optimum dose-energy conditions for the continuous BOX layer formation. Whereas, in the case of discontinuous BOX layers, the TD generation is observed in samples implanted at energies above 120 keV. The generation of TDs is discussed with the emphasis on the effect of implantation energy. PACS 61.72Ff; 61.72Lk  相似文献   

13.
The structure and the electrical and magnetic properties of Mn-implanted Si, which exhibits ferromagnetic ordering at room temperature, are studied. Single-crystal n- and p-type Si wafers with high and low electrical resistivities are implanted by manganese ions to a dose of 5 × 1016 cm?2. After implantation and subsequent vacuum annealing at 850°C, the implanted samples are examined by various methods. The Mn impurity that exhibits an electric activity and is incorporated into the Si lattice in interstitial sites is found to account for only a few percent of the total Mn content. The main part of Mn is fixed in Mn15Si26 nanoprecipitates in the Si matrix. The magnetization of implanted Si is found to be independent of the electrical resistivity and the conductivity type of silicon and the type of implanted impurity. The magnetization of implanted Si increases slightly upon short-term postimplantation annealing and disappears completely upon vacuum annealing at 1000°C for 5 h. The Mn impurity in Si is shown to have no significant magnetic moment at room temperature. These results indicate that the room temperature ferromagnetism in Mn-implanted Si is likely to be caused by implantation-induced defects in the silicon lattice rather than by a Mn impurity.  相似文献   

14.
Doping of semiconductors by ion implantation usually requires implantation doses below 1013 cm–2 to obtain typical impurity concentrations of <1018 cm–3. The lattice location of impurities as well as the defect recovery after such low dose implantations can be studied using the emission channeling technique. In this technique, single crystals are doped with radioactive probe atoms and the channeling effects of electrons, positrons or -particles emitted from these atoms are measured. We present a quantitative analysis of electron emission channeling measurements after heavy-ion implantation into Si and III–V compound semiconductors by comparison with calculated channeling profiles based on the dynamical theory of electron diffraction. For In atoms implanted into Si, complete substitutionality was found after rapid thermal annealing to 1200 K. For lower annealing temperatures, the observed channeling effects indicate small mean displacements (of about 0.2 Å) of the In atoms from substitutional sites, caused by residual implantation defects. For GaAs, GaP and InP implanted at low temperatures with In or Cd isotopes, pronounced recovery stages around 300, 400 and 350 K, respectively, were observed and substitutional fractions close to 100% were derived after annealing above the stage.  相似文献   

15.
The electrical properties of the SiO2/n-type Si(100) interface, where the silicon-oxide layer was grown by an electrodeless rf oxygen-plasma-cathodization technique, were investigated usingC-V and DLTS methods. Interface traps with high density in the range of 1012 eV–1 cm–2 and a capture cross section as large as 10–18 cm2 were found in the upper region of the silicon forbidden gap. After a post-annealing process, typically at 400°C for 30 min in dry N2 atmosphere, their densities and capture cross sections were reduced to the range of 1–2 × 1011 eV–1 cm–2 and 10–19 cm–2, respectively. Apparant differences in DLTS curves before and after thermal annealing were also observed. Results are qualitatively explained by considering the specific oxidation and annealing mechanism of this low-temperature silicon-oxidation technique.  相似文献   

16.
Supersaturated surface alloys produced by very high dose (0.8–2.6×1017cm–2) implantation of As-ions into silicon and subsequent pulsed electron-beam annealing have been investigated by means of the channeling technique. The maximum solubility limit of 7×1021 As/cm3 has been determined. It exceeds the equilibrium solubility limit by more than a factor of 4. Angular scan measurements indicated that for doses above 1×1017cm–2 As atoms are displaced by about 0.12 Å from the regular lattice sites.  相似文献   

17.
Techniques of film deposition by co-evaporation, ion-beam assisted mixing, oxygen ion implantation, and thermal annealing were been combined in a novel way to study processing of erbium-in-silicon thin-film materials for optoelectronics applications. Structures with erbium concentrations above atomic solubility in silicon and below that of silicide compounds were prepared by vacuum co-evaporation from two elemental sources to deposit 200-270 nm films on crystalline silicon substrates. Ar+ ions were implanted at 300 keV. Oxygen was incorporated by O+-ion implantation at 130 keV. Samples were annealed at 600 °C in vacuum. Concentration profiles of the constituent elements were obtained by Rutherford backscattering spectrometry. Results show that diffusion induced by ion-beam mixing and activated by thermal annealing depends on the deposited Si-Er profile and reaction with implanted oxygen. Room temperature photoluminescence spectra show Er3+ transitions in a 1480-1550 nm band and integrated intensities that increase with the oxygen-to-erbium ratio.  相似文献   

18.
We have measured the gettering efficiencies for Cu and Ni of various silicon wafers, such as MeV-boron-implanted p- polished wafers treated with two different implantation doses of 3×1013 atoms/cm2 B and 1×1015 atoms/cm2 B, respectively. A third kind of wafer was covered with a poly-silicon back side and thermally pretreated before the gettering test to form oxygen precipitates in the bulk. The gettering test started with a reproducible spin-on spiking on the front side of the wafers in the range around 1012 atoms/cm2, followed by a thermal treatment to redistribute the metallic impurities in the wafer. Then the gettering efficiencies were measured by a novel wet chemical layer-by-layer etching technique in combination with inductively coupled plasma mass spectrometry. This led to “stratigraphical concentration profiles” of the metallic impurities in the wafer with typical detection limits of (5–10)×1012 atoms/cm3. The concentration profiles were compared with concentration profiles found after testing the gettering efficiency of p/p+ epitaxial wafers. Almost 100% of the total intentional Cu spiking was recovered in the boron buried layer for both implantation doses. On the front surface and in the region between the front surface and the buried layer a Cu concentration ∼20 times higher than on/in p/p+ epitaxial wafers/layers was measured for the implanted specimen. The lower implantation dose led to higher Cu-concentration levels on the front surface compared to the higher implantation dose. The wafer containing a MeV-boron-implanted layer as well as oxygen precipitates and a poly-silicon back side exhibited a Cu distribution of 30/∼0/70%, respectively. Thus, the gettering by poly-silicon exceeded both the gettering effects by the buried layer and by the oxygen precipitates. Ni gettering in MeV-boron-implanted wafers exhibited other characteristics. The gettering efficiency of the buried layer was 65%, while the remaining Ni contamination was equally distributed between the front-side region and the wafer back side. A wafer containing a buried layer obtained by a 1×1015 atoms/cm3 B dose and oxygen precipitates exhibited 17% of the total Ni contamination in the boron layer, while ∼80% of the total Ni contamination was gettered by oxygen precipitates. In the case of buried layer/oxygen precipitates/poly-silicon back side the distribution was found to be 13/37/45%, thus exhibiting equal gettering strengths for oxygen precipitates and the poly-silicon back side for Ni contamination. The results were discussed in terms of segregation and relaxation-induced gettering mechanisms including different reaction rates. Received: 30 May 2001 / Accepted: 16 June 2001 / Published online: 30 August 2001  相似文献   

19.
Influence of ion implantation on the thermal diffusivity of semiconductors   总被引:1,自引:0,他引:1  
The influence of ion implantation on the thermal diffusivities of semiconductors are studied using the mirage effect. The dependences of the thermal diffusivities on the implantation doses are obtained. For silicon wafers implanted by boron, phosphorus and arsenic ions, with constant implantation energy, the thermal diffusivities decrease with increasing dose, when the doses are less than some critical values. The theoretical calculation results by using a one-dimensional multilayer model are in good agreement with the experimental ones. On the other hand, for gallium-arsenide wafers implanted with silicon ions, it is found experimentally that the thermal diffusivity increases with the implantation dose.  相似文献   

20.
30 keV boron ions are implanted at doses of 2×1014 and 2×1015 cm–2 in 100 silicon wafers kept at room or liquid-nitrogen temperatures. The samples are analyzed by double-crystal X-ray diffraction, transmission electron microscopy and secondary ion-mass spectrometry before and after furnace annealing at 800°C. The low-dose implant does not amorphize the substrate at any of the temperatures, and residual defects together with a remarkably enhanced boron diffusion are observed after annealing. The high-dose implant amorphizes the substrate only at low temperature. In this case, unlike the room-temperature implant, the absence of any residual defect, the incorporation of the dopant in substitutional position and a negligible profile braodening of boron are obtained after annealing. In principle, this process proves itself a promising step for the fabrication of p +/n shallow junctions with good electrical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号