首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
PTT/PET共混体系晶体形态与结晶性能的研究   总被引:1,自引:0,他引:1  
用差示扫描量热仪(DSC)、广角X射线衍射(WAXD)和正交偏光显微镜研究了聚对苯二甲酸丙二酯(PTT)和聚对苯二甲酸乙二酯(PET)共混体系的晶体形态与结晶性能.结果表明,共混体系结晶性能与PTT的含量有关.PET的加入,使共混体系的球晶尺寸减小.球晶完善性降低.当PTT含量为40wt%~60wt%时,共混物分别出现了双重熔融峰和双重结晶峰.双重熔融峰是加热过程中熔融重结晶造成的,双重结晶峰说明不完善的晶体产生的次级结晶.  相似文献   

2.
研究了聚对苯二甲酸丁二酯(PBT)/聚对苯二甲酸乙二酯(PET)共混物的固态缩聚反应,从反应动力学过程的测定结果,表明与纯PET或PBT不同,其反应速度较快,并呈超加和的相对分子质量(以特性粘数[η]表征)增长。从反应发生在液相的基本观点出发,说明温度、共混等使液相增多,将加速反应的进行,加上共混物之间的相互缩聚和酯交换,生成嵌段共聚物的结果,导致超加和效应。  相似文献   

3.
从四个方面综述了近年来聚对苯二甲酸乙二酯(PET)和聚对苯二甲酸丁二酯(PBT)生物改性的研究进展:(1)在聚酯合成中采用生物原料;(2)采用共聚技术制备可生物降解性共聚酯;(3)生物活性物质在聚酯中的引入改性,可提高其生物相容性和抗菌能力,在聚酯用于人造器官时,可使血管纤维原细胞的细胞增殖;(4)生物酶对聚酯进行水解改性,可减轻重量,并改善吸湿性、染色性等性能。  相似文献   

4.
采用熔融共混法制备了碳纳米管(CNT)填充改性的聚对苯二甲酸丙二酯(PTT)/乙烯-醋酸乙烯酯共聚物(EVA)三元复合材料.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、接触角测量仪、旋转流变仪等研究了该复合材料中碳纳米管的分布、不相容的相形态以及流变和力学性能.研究结果表明,与EVA相比,PTT组分具有较低...  相似文献   

5.
研究了自晶种成核对聚对苯二甲酸1,3-丙二酯(PTT)结晶行为的影响.示差扫描量热结果表明,经过自晶种成核处理后,PTT的结晶温度明显增加.应用Avrami方程分析了PTT等温结晶动力学,Avrami指数n的平均值为3.34,表明初级结晶为三维球晶生长.自晶种成核导致结晶活化能和链折叠功减小,促进PTT的结晶.  相似文献   

6.
利用热分析研究了聚对苯二甲酸乙二醇酯(PET)与对苯二甲酸乙二醇酯(ET)-己内酯(CL)共聚物(TCL)共混体系的相容性,同时考察了体系中TCL组成分布不均一性及高温热处理对体系相容性的影响。  相似文献   

7.
结晶性芳香聚酯高压结晶行为研究进展   总被引:2,自引:0,他引:2  
运用高压极限手段研究聚合物的结构、形态和性能是20世纪60年代以来兴起的一项聚合物前沿课题。本文主要结合作者自己的研究工作,重点叙述聚对苯二甲酸乙二醇酯(PET)的高压结晶行为研究,包括温度、压力、时间及分子量对PET高压结晶行为的影响,高压结晶PET的形态。以及对PET伸直链晶体结晶机理的探讨,同时简要介绍了对其它结晶性芳香聚酯诸如聚对苯二甲酸丁二醇酯(PBT)及聚对萘二甲酸乙二醇酯(PEN)的高压结晶行为研究,反映了该领域的研究概况和最新进展。并对今后的研究提出了展望。  相似文献   

8.
聚对苯二甲酸戊二酯的性能研究   总被引:2,自引:0,他引:2  
采用酯化法合成聚对苯二甲酸戊二酯 (PPT) ,利用IR与1H NMR对其结构进行表征 ,对其特性粘数的测定方法进行了研究 ,得到k +k′约为 0 5,即PET切片特性粘数的测试方法同样适用于PPT .用差热扫描量热法 (DSC)研究了PPT的结晶能力 ,并进行了等温结晶动力学分析 ,结果表明PPT的结晶速度很慢 ,需要较长的结晶时间 .热失重法 (TG)比较了PPT与聚对苯二甲酸丙二酯 (PTT)的热降解过程 ,结果表明尽管二者熔点相差很大 ,但热分解温度相近 .  相似文献   

9.
聚对苯二甲酸丙二醇酯作为新型聚酯材料,具有非常优良的性能,但其易燃性很大的限制了它的应用范围。为了提高对苯二甲酸乙二醇酯的阻燃性能,本文以无卤膨胀型EPFR-300A为阻燃改性剂,马来酸酐接枝聚烯烃(POE-g-MAH)弹性体为增韧剂,对聚对苯二甲酸丙二醇酯树脂(PTT)进行阻燃改性。通过热重分析仪(TGA)、示差扫描量热仪(DSC)、扫描电子显微镜(SEM)、力学性能等技术手段研究了阻燃剂和增韧剂对PTT树脂力学、热学和阻燃性能的影响。结果表明,增韧剂POE和POE-g-MAH的添加提高了PTT树脂的综合力学性能。当质量分数相同时,POE-g-MAH对PTT树脂的增韧效果要优于POE,且当POE-g-MAH质量分数为7%时,综合力学性能最佳。当添加相同质量分数增韧剂,EPFR-300A质量分数达到20%时,阻燃PTT材料阻燃性能最佳,极限氧指数(LOI)达到28.0%,垂直燃烧阻燃等级达到UL94 V-0级。EPFR-300A阻燃剂与PTT树脂间相容性良好,可以有效地促进PTT树脂成炭并提高材料的阻燃性能。  相似文献   

10.
聚对苯二甲酸丙二醇酯(PTT)的研究   总被引:2,自引:0,他引:2  
新型聚酯材料聚对苯二甲酸丙二醇酯(PTT)是一种极有应用潜力的聚合物,但在非纤维领域的研究与应用才刚开始。本文简要概述了其发展状况;详述其结构、性能特点;重点介绍PTT目前在非纤维领域的应用与研究进展。  相似文献   

11.
Isothermal crystallization and subsequent melting behavior for three different types of linear aromatic polyester, namely poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poly(butylene terephthalate) (PBT), were investigated (with an emphasis on PTT in comparison with PET and PBT). These polyesters were different in the number of methylene groups (i.e. 2, 3, and 4 for PET, PTT, and PBT, respectively). Isothermal crystallization studies were carried out in a differential scanning calorimeter (DSC) over the crystallization temperature range of 182-208 °C. The wide-angle X-ray diffraction (WAXD) technique was used to obtain information about crystal modification and apparent degree of crystallinity. The kinetics of the crystallization process was assessed by a direct fitting of the experimental data to the Avrami, Tobin, and Malkin macrokinetic models. It was found that the crystallization rates of these polyesters were in the following order: PBT>PTT>PET, and the melting of these polyesters exhibited multiple-melting phenomenon. Lastly, the equilibrium melting temperature for these polyesters was estimated based on the linear and non-linear Hoffman-Weeks (LHW and NLHW) extrapolative methods.  相似文献   

12.
The aim of this work is to discriminate thermoplastic polyester-polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT), which cannot be easily identified by many methods. Both matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were applied to identify these polyesters owing to their analytical ability to determining polymers' chemical structure. The three thermoplastic polyesters can be easily distinguished by MALDI-TOF MS according to their different repeated units. Py-GC/MS was used to analyze their specific pyrolyzates. The three polyesters can be identified through their characteristic pyrolysis products as well.  相似文献   

13.
Poly(trimethylene terephthalate) (PTT) nanocomposites containing carbon nanotubes (CNTs) with different surface structure and aspect ratio were prepared by melt compounding for electrospinning. The dispersion state of the CNTs in the composites was then examined utilizing rheology tools. The results show that carboxylic surface functionalized CNTs present better dispersion in the matrix than hydroxy surface functionalized CNTs because the former has stronger affinity to the PTT. Besides surface functionalization, the aspect ratio of CNTs is also vital to their final dispersion. The CNTs with lower aspect ratio are dispersed as individuals or small bundles while those with higher aspect ratio are dispersed mainly as flocs with large hydrodynamic radius, showing higher effective volume fraction. The presence of CNTs has a large influence on the morphologies of electrospun fiber and on the appearances of CNTs in the fibers. In the presence of CNTs with lower aspect ratio, continuous composite fibers are obtained. But the structure of those continuous fibers highly depends on the surface group of CNTs. Carboxylic surface functionalized CNTs are well embedded by the PTT and oriented along the fiber axis during electrospinning, leading to bead-free and uniform fiber morphology; while hydroxy surface functionalized CNTs show tortuous conformations with less orientation in the fibers, and as a result, the obtained fibers show beaded and misshaped morphologies. In the case of higher aspect ratio, however, the CNTs prefer to exist as entanglements or knots in the streamlines, and thereby only beaded or even uncontinuous fibers are obtained. Therefore, the formation and fiber morphology of PTT/CNT composite fibers obtained by electrospinning strongly depend on the surface functional groups of the CNTs, as well as on the CNT structure.  相似文献   

14.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content.  相似文献   

15.
Core-shell structured polyacrylic(named CSSP) impact modifiers consisting of a rubbery poly(n-butyl acrylate) core and a rigid poly(methyl methacrylate) shell with a size of about 353 nm were prepared by seed emulsion polymerization. The CSSP modifiers with different core-shell weight ratios(90/10, 85/15, 80/20, 75/25, 70/30, 65/35 and 60/40) were used to modify the toughness of poly(butylene terephthalate)(PBT) by melt blending. It was found that the polymerization had a very high instantaneous conversion(> 95.7%) and overall conversion(99.7%). The morphology of the core-shell structure was confirmed by means of transmission electron microscopy. Scanning electron microscopy was used to observe the morphology of the fractured surfaces. Differential scanning calorimeter was used to study the crystallization behaviors of PBT/CSSP blends. The dynamic mechanical analyses of PBT/CSSP blends showed two merged transition peaks of PBT matrix, with the presence of CSSP core-shell structured modifier, that were responsible for the improvement of PBT toughness. The results indicated that the notch impact strength of PBT/CSSP blends with a core-shell weight ratio of 75/25 was almost 8.64 times greater than that of pure PBT, and the mechanical properties agreed well with the SEM observation.  相似文献   

16.
A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4′-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blended with polypropylene(PP) and polybutylene terephthalate(PBT) by melt mixing. The thermal behavior, liquid crystalline properties, morphological structure, and mechanical properties of the blends were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM), scannin...  相似文献   

17.
Poly(trimethylene terephthalate)(PTT) is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR) analysis,differential scanning calorimetry(DSC) and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTTwithintrinsicviscosity(Ⅳ) of 0.74 dL/g has a maximum crystallinity...  相似文献   

18.
郭朝霞  于建 《高分子科学》2017,35(3):434-445
The morphology of polyamide 6/poly(butylene terephthalate)(PA6/PBT, 70/30, W/W) blends filled with pristine Zinc oxide(ZnO) nanoparticles and ZnO surface-modified by γ-glycidoxypropyltrimethoxysilane(K-ZnO) was investigated. The incorporation of ZnO and K-ZnO by one-step compounding both resulted in a smaller size and narrower distribution of PBT domains and the effect of ZnO was greater than K-ZnO. To reveal the underlying mechanism, two-step compounding in which ZnO or K-ZnO was premixed with PA6 or PBT was conducted and the finest morphology was achieved when mixing PA6 with premixed PBT/ZnO. Transmission electron microscopy(TEM) demonstrated that ZnO was distributed in PBT in all cases and K-ZnO was enriched at the interface except when K-ZnO was premixed with PBT. ZnO and K-ZnO caused a deterioration in the melt rheological properties of PBT, which played a dominating role in the morphological changes. In addition, the interfacial localization of K-ZnO enhanced the dynamic rheological properties of PA6/PBT blends substantially.  相似文献   

19.
The poly(trimethylene terephthalate) (PTT)/clay nanocomposite has been successfully prepared via melt intercalation using a co-rotating twin screw extruder. The nanocomposite was characterized by wide angle X-ray diffraction (WAXD), transmission electron microscope (TEM), differential scanning calorimetry (DSC), polarized light microscope (PLM) and dynamic mechanical analysis (DMA). The nanocomposite forms an exfoliated structure, which can be observed by WAXD and TEM. The effect of clay layers on the crystallization behaviors of PTT was studied through isothermal and non-isothermal crystallization methods. The results suggest that the introduction of nanosize clay layers accelerates the crystallization rate of PTT and the clay layers act as nucleation agents. The morphology of spherulites was investigated with PLM and the result is well in agreement with crystallization kinetics. DMA shows that glass transition temperature (Tg) and storage modulus (E) of the PTT matrix of the nanocomposite are higher than those of pure PTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号