首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A tailor‐made Cu(II) ion‐imprinted polymer based on large‐surface‐area graphene oxide sheets has been synthesized for the preconcentration and determination of trace copper from food samples by solid‐phase extraction. Attributed to the ultrahigh surface area and hydrophilicity of graphene oxide, the Cu(II) ion‐imprinted polymer prepared by the surface ion‐imprinting technique exhibited a high binding capacity and a fast adsorption rate under the optimized experimental conditions. In the static adsorption experiments, the maximum adsorption capacity of Cu(II) ion‐imprinted polymer is 109.38 mg/g at 25°C, which is much higher than that of the nonimprinted polymer (32.12 mg/g). Meanwhile, the adsorption is very rapid and equilibrium is reached after approximately 30 min. The adsorption mechanism is found to follow Langmuir adsorption model and the pseudo‐second‐order adsorption process. The Cu(II) ion‐imprinted polymer was used for extracting and detecting Cu(II) in food samples combined with graphite flame atomic adsorption spectrometry with high recoveries in the range of 97.6–103.3%. The relative standard deviation and limit of detection of the method were evaluated as 1.2% and 0.37 μg/L, respectively. The results showed that the novel absorbent can be utilized as an effective material for the selective enrichment and determination of Cu(II) from food samples.  相似文献   

2.
A molecularly imprinted polymer (MIP) is synthesised by a noncovalent protocol in which ibuprofen was used as a template molecule. The polymer was evaluated chromatographically and it was seen that the MIP showed cross-reactivity. Subsequently, when this polymer was used as sorbent in SPE it was possible to selectively extract a mixture of nonsteroidal anti-inflammatory drugs from aqueous samples when a cleanup step with dichloromethane was performed. The performance of the MIP was evaluated with river water and water from a wastewater treatment plant, and compared with the performance of a commercial Isolute ENV+ sorbent.  相似文献   

3.
A vanadium ion‐imprinted polymer was synthesized in the presence of V(V) and N‐benzoyl‐N‐phenyl hydroxyl amine using 4‐vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2’‐azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion‐imprinted polymer was used as the sorbent in the development of the solid‐phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples.  相似文献   

4.
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP.  相似文献   

5.
The synthesis and performance of a molecularly imprinted polymers (MIPs) as a selective solid phase extraction sorbent for the preconcentration of the carbamate pirimicarb from water samples is described. The MIP was prepared using pirimicarb as the template, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer, and using chloroform as the solvent. The detection of pirimicarb was carried out by differential pulse voltammetry (DPV) at a hanging mercury drop electrode (HMDE) in 0.1 mol l−1 HCl. Solvents of different polarities were checked for the polymer synthesis, and different experimental variables (sample pH, selection of the eluent used, eluent volume, analyte and eluent flow rates and sample volume) associated with the rebinding/extraction process were optimised. For a 25 ml sample, the process took about 13 min and resulted in a nominal enrichment factor of 50 (eluent MeOH:H2O:HAc, 7:2:1; 0.5 ml) for pirimicarb. A limit of detection of 4.1 μg l−1 was obtained, and a good reproducibility of the measurements using different MIP microcolumns was found. Furthermore, the MIP selectivity was evaluated by checking several substances with similar and different molecular structures to that of pirimicarb. As an application, pirimicarb was determined in water samples of diverse origin which were spiked at a concentration level of 71.5 μg l−1.  相似文献   

6.
7.
以Pb2+为模板,丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用本体聚合技术,制备了对Pb2+具有特异性识别作用的离子印迹材料。通过红外光谱,吸附容量,干扰实验等讨论了该离子印迹材料的相关性质。结果表明,该离子印迹材料对Pb2+的结合能力明显强于非印迹材料,能够很好的排除其他金属离子的干扰。通过制备该离子印迹材料,能够富集水体中的痕量铅,结合原子吸收光谱法对其进行定量分析,为测定复杂环境样品中痕量铅离子提供一个高选择性,高预富集效率的固相萃取材料和分析方法。  相似文献   

8.
Zhu G  Fan J  Gao Y  Gao X  Wang J 《Talanta》2011,84(4):1124-1132
A surface molecularly imprinted polymer (MIP) was synthesized by using imidazole as the template and modified silica particles as the support material. The static adsorption, solid phase extraction (SPE) and high-performance liquid chromatography (HPLC) experiments were performed to investigate the adsorption properties and selective recognition characteristics of the polymer for imidazole and its structural analogs. It was shown that the maximum binding capacities of imidazole on the MIP and the non-imprinted polymer (NIP) were 312 and 169 μmol g−1, respectively. The adsorption was fast and the adsorption equilibrium was achieved in 30 min. The binding process could be described by pseudo-second order kinetics. Compared with the corresponding non-imprinted polymer, the molecularly imprinted polymer exhibited much higher adsorption performance and selectivity for imidazole. The selective separation of imidazole from a mixture of 1-hexyl-3-methylimidazolium bromide ([C6mim][Br]) and 2,4-dichlorophenol could be achieved on the MIP-SPE column. The recoveries of imidazole and [C6mim][Br] were 97.6-102.7% and 12.2-17.3%, respectively, but 2,4-dichlorophenol could not be retained on the column. The surface molecularly imprinted polymer presented here may find useful application as a solid phase absorbent to separate trace imidazole in environmental water samples. This may also form the basis for our research program on the preparation and application of alkyl-imidazolium imprinted polymers.  相似文献   

9.
The molecularly imprinted SPE directly coupled to RP LC‐MS/MS method has been developed and successfully validated for the determination of six hormones in water and sediment samples. The method is based on the use the home‐made column filled with a molecularly imprinted sorbent (imprinted against estrogens) that was used under nonaqueous conditions. Thus, its high selectivity could be utilized resulting in low matrix components’ coextraction. The method showed excellent recovery (92–105%) and satisfactory sensitivity (LOQs water: 1.9–4.0 ng/L; LOQs sediment: 0.2–0.5 ng/g). The intra‐ and interprecision for water and sediment was in the range of 4.0–6.0% and 4.4–7.6%, respectively. Finally, 20 water and sediment samples collected from the Svratka river were analyzed. Only estrone was quantified in eight water samples (4.4–7.1 ng/L); no analytes were found in sediment samples.  相似文献   

10.
Uniform-sized molecularly imprinted polymer (MIP) beads for metsulfuron-methyl (MSM) were firstly prepared by one-step swelling and polymerization method using 4-vinylpyridine (4-VPY) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker, respectively. The preparation was optimized by varying the ratio of MSM to 4-VPY. The chromatographic behaviors of MSM and other structurally related sulfonylureas (SUs) on the resultant MIP column were evaluated. The imprinted polymer revealed specific affinity to the template and the fair resolution of SUs was also obtained. Furthermore, the uniform-sized MSM-MIP was used as the solid phase extraction (SPE) material to enrich MSM in real water samples before reversed-phase HPLC (RP-HPLC) analysis. The recovery of MSM from 100 mL of drinking water at a 50 ng/L spike level was 99.59% with R.S.D. of 1.13%. The detection limit was about 6.0 ng/L of MSM when enriching a 100 mL water sample.  相似文献   

11.
A method based on molecular crowding and ionic liquids as reaction solvents has been used for the synthesis of molecularly imprinted polymers. Levofloxacin was selected as the template, polymethyl methacrylate was the molecular crowding agent, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (ionic liquid) was selected as the reaction solvent and porogen. The optimized proportion for the mixed porogen was dimethyl sulfoxide/ionic liquid/polymethyl methacrylate 1:1.6:5 in chloroform (150 mg mL?1). The morphology and chemical composition of levofloxacin imprinted polymers were assessed by scanning electron microscopy and Fourier transform infrared spectroscopy. The absorption experiments demonstrated that the levofloxacin imprinted polymers possess high selective recognition property to levofloxacin and analogs, including enrofloxacin, ciprofloxacin and gatifloxacin, which all belong to fluoroquinolones. An extraction method using levofloxacin imprinted polymers as sorbent followed by high‐performance liquid chromatography analysis was optimized for the determination of four fluoroquinolones in milk and lake water samples. Under the optimized conditions, good linearity was observed in a range of 5–1000 ng g?1 with the limit of detection between 0.3 and 0.5 ng g?1 for the four fluoroquinolones. The recoveries at three spiked levels ranged 82.4–98.3% with the relative standard deviation ≤4.9.  相似文献   

12.
Molecularly imprinted polymers (MIPs) possessing a good binding ability for the family of sulfonylurea herbicides were prepared using 4- or 2-vinyl pyridine as functional monomers and ethylene glycol dimethylacrylate as a crosslinker. Metsulfuron methyl was used as a template. It was found that MIP prepared in a polar organic solvent (acetonitrile) showed good recognition of the template and five other sulfonylurea herbicides (thifensulfuron methyl, chlorsulfuron, prosulfuron, chlorimuron ethyl, triflusulfuron methyl). The binding capacity was 0.08-0.1 mg g−1 of the polymer. It was found that the polymer could be used for quantitative enrichment (>75%) of five sulfonylurea herbicides from water.  相似文献   

13.
A molecularly imprinted polymer (MIP) against lamotrigine (LTG) was prepared, characterized, and its recognition properties were compared with a blank nonimprinted polymer (NIP). Two classes of binding sites were found in the MIP--high affinity (K(D) = 16.2 microM) and low affinity (K(D) = 161.3 microM). Selectivity of the synthesized MIP was examined using compounds with similar structures or therapeutic uses to LTG. In compounds which had structural similarity to LTG, the presence of amine groups appeared to affect binding to the MIP, however overall shape of the molecule was also important. Under the optimal conditions developed, other anticonvulsant drugs tested did not bind the MIP. A molecularly imprinted SPE (MISPE) procedure was developed which had a recovery of 84-89%, interday variation of less than 3.4% and intraday variation of less than 2.8%. The MISPE procedure was compared with a routine liquid-liquid extraction (LLE) procedure used for the HPLC determination of LTG in serum from patients. The data indicated that the MIP synthesized showed both good selectivity and high affinity for LTG and could be used for the extraction of the drug from serum samples or as the receptor layer for an LTG selective biosensor.  相似文献   

14.
A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid‐phase extraction. The optimal conditions for solid‐phase extraction were provided by cartridge conditioning using acidified water purified from a Milli‐Q system, sample loading under basic aqueous conditions, clean‐up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90–102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.  相似文献   

15.
Steroid hormones as endocrine disrupting compounds can interfere with the functioning of hormonal systems of organisms and thus affect the health and reproduction of humans and wildlife. Unfortunately, these types of harmful endocrine disrupting compounds have been found in a variety of environmental samples at very low concentrations. Therefore, a simple, fast, and efficient method for enrichment of water samples is needed. A molecularly imprinted solid‐phase extraction combined with high performance liquid chromatography coupled with diode array detection was developed for the determination of six steroid hormones, such as estrone, 17‐β‐estradiol, estriol, 17‐α‐ethinylestradiol, progesterone, and testosterone in water samples. The recoveries obtained in the proposed method were in the range of 78.7–101.3%. Matrix effect below 20% suggests that the quantitative and qualitative results of the analysis were not significantly affected by the matrix. The results show that molecularly imprinted polymers based on spherical silica gel had the potential to be a highly innovative and selective sorbent. The proposed method was proved to be applicable for molecularly imprinted solid‐phase extraction in selective and reliable extraction and enrichment of steroid hormones in environmental water samples.  相似文献   

16.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

17.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

18.
靳亚峰  陈娜  刘润强  陈军  柏连阳  张裕平 《色谱》2013,31(6):587-595
以橄榄醇为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,甲苯和十二醇为溶剂,通过本体聚合法制备了橄榄醇分子印迹聚合物。利用平衡结合实验、扫描电镜(SEM)及红外光谱(FTIR)对分子印迹聚合物(MIP)进行了表征,并用该聚合物进行了加标麦麸中橄榄醇的固相萃取(SPE)研究。平衡结合实验表明MIP对模板分子具有更好的识别性。Scatchard分析表明对橄榄醇分子的吸附存在2类不同结合位点,其中高亲和力结合位点和低亲和力结合位点的解离常数分别为0.021和1.002 mmol/L,相应的最大表观结合量分别为18.74和135.9 μmol/g。在优化的固相萃取条件下,MIP固相萃取柱对加标麦麸中橄榄醇的回收率达到97.8%~98.8%,相对标准偏差为2.8%~4.2%(n=5),线性范围为0.1~100 mg/L,检出限(S/N=3)为0.062 mg/L。与非印迹聚合物(NIP)柱及市售聚苯乙烯/二乙烯基苯(PLS)柱相比,MIP柱的选择性更强,回收率更高,纯化效果更好。  相似文献   

19.
林福华  黄晓佳  袁东星  刘宝敏 《色谱》2010,28(5):507-512
以双酚A(BPA)为单体,利用整体材料“原位”聚合技术制备以分子印迹聚合物为涂层的吸附萃取搅拌棒(MIP-SBSE),然后与高效液相色谱(HPLC)-二极管阵列检测器联用,探讨其对环境水样BPA的选择萃取性能。优化萃取过程中吸附和解吸时间、解吸液种类以及基底pH值和离子强度对目标化合物的选择吸附性能。在最佳条件下,MIP-SBSE可对模板分子进行有效的选择吸附,线性范围为1.0~200 μg/L,检出限(S/N=3)和定量限(S/N=10)分别为0.28μg/L和0.94 μg/L。在实际水样分析中,具有良好的加标回收率,其值为96.0%~108.7%。研究结果表明,所建立的方法具有简便、灵敏和环境友好等特点。  相似文献   

20.
The combination of molecularly imprinted polymer with high performance liquid chromatography has been developed to determine cyromazine and its metabolic melamine in some samples. However, the potential risk of template leakage used in molecularly imprinted polymer is a major disadvantage. To solve this problem, 2-(4,6-diamino-1,3,5-triazin-2-ylamino) ethanethiol disulfide, a molecule that shares the similar imprinting sites with cyromazine and melamine, was selected as pseudo template to prepare molecularly imprinted polymer. Methacrylic acid, ethylene glycol dimethyl acrylate and toluene were selected as functional monomer, crosslinker and porogen, respectively. The molecular recognition property and binding capability of cyromazine and melamine were evaluated by adsorption test and Scatchard analysis. The results showed that the molecularly imprinted polymer based on pseudo template had more excellent affinity and selectivity for cyromazine and melamine. The resulting molecularly imprinted polymer was used as a solid-phase extraction material to enrich cyromazine and melamine in egg and milk samples for high performance liquid chromatography analysis. The solid-phase extraction process was carefully optimized. It was found that when different concentration of cyromazine and melamine standards were spiked into samples, satisfactory recovery rate of cyromazine and melamine were obtained as 85.6-98.8% with relative standard deviation <5.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号