首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Figure Schematic diagram of a typical arrangement used for hyphenating chemical microseparations (e.g. capillary HPLC, CE, or CEC) with microcoil NMR detection  相似文献   

2.
A novel method of determining organochlorine pesticides (OCPs) is described. It is based on solid-phase microextraction (SPME) and gas chromatography–electron capture detection. During the development of the method, soil samples were prepared, spiked with standard solution, and then aged for some time. Extraction conditions such as the extraction time, the NaCl content, the volume of water, the extraction temperature and the desorption time were investigated and optimized. The limits of detection obtained using the method ranged from 0.10 to 0.51 ng g−1, and relative standard deviations were lower than 10% for most organochlorine pesticides. Real soil samples were successfully analyzed using the proposed method. The results from the method developed here were in good agreement with those obtained using ultrasonic extraction. The result demonstrates that aging soils spiked with standard solution is an important method development step, because the soil samples obtained using this approach are more like real soils than those obtained when aging is not used.   相似文献   

3.
A method is described for determination of residues of the insecticide Etofenprox in environmental samples. Anionic surfactant micelle-mediated extraction (coacervation extraction) was evaluated for isolation of Etofenprox before HPLC. The optimum conditions used for extraction included: 0.09 g sodium dodecanesulfonate (SDoS), 3.1 mL (3.3, for concentrations below 0.04 mg L−1) 12 mol L−1 HCl, 5 min vortex stirring, 5 min centrifugation at 4000 rpm, 2 h equilibration time. The limits of quantification (LOQ) and detection (LOD) were 0.01 and 0.004 mg L−1, respectively, and recoveries obtained from five real samples ranged from 94.33±2.48 to 100.13±2.71%. The precision of the method was good; relative standard deviations (RSD) were less than 7%.   相似文献   

4.
Enzymatically cleaved glycans from sub-milligram quantities of erythropoietin (EPO) and ovalbumin have been analyzed, without further purification, by two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy. At NMR sample concentrations below 50 μmol L−1 the major components of the oligosaccharide fractions could be distinguished by their anomeric proton chemical shift and their size-dependent diffusion coefficients. Figure 1H NMR diffusion decay curves of anomeric protons in the EPO glycan fraction  相似文献   

5.
Various toxicological and metabolic interactions have been reported to exist between arsenic and selenium. In the present study, synthetic seleno-arsenic compounds, potentially suitable for probing metabolic interactions between these two elements, were prepared and tentatively characterized by using high-performance liquid chromatography (HPLC)–electrospray tandem mass spectrometry and HPLC–inductively coupled plasma mass spectrometry. In analogy to the recently identified thio-arsenic species, which can be prepared from their corresponding oxo-arsenic species via reaction with H2S, the seleno-arsenic compounds were also derived from oxo-arsenic compounds via reaction with H2Se. Figure H2Se bubbled into solutions containing oxo‐arsenosugars converts them into their seleno‐arsenosugar analogues.  相似文献   

6.
A quantitative technique is described for a sample preparation followed by high performance liquid chromatography method for the simultaneous determination of sulfamonomethoxine and its metabolites, N 4-acetyl SMM and 2,6-dihydroxy SMM, in chicken plasma. The average recoveries, analytical total time, and limits of quantitation were ≥80% (relative standard deviations (SD) ≤6%), <30 min sample-1 (12 samples in 2 h), and ≤0.09 μg ml−1, respectively. The procedure, performed under 100% aqueous conditions, uses no organic solvents and toxic reagents at all and is, therefore, harmless to the environment and humans.   相似文献   

7.
Recent advances in nanotechnology have enabled the development of nanoscale sensors that outperform conventional biosensors. This review summarizes the nanoscale biosensors that use aptamers as molecular recognition elements. The advantages of aptamers over antibodies as sensors are highlighted. These advantages are especially apparent with electrical sensors such as electrochemical sensors or those using field-effect transistors. Figure Feeling proteins with aptamer-functionalized carbon nanotubes  相似文献   

8.
A reversed-phase HPLC method has been developed for determination of twelve intact glucosinolates—glucoiberin, glucocheirolin, progoitrin, sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin, glucotropaeolin, glucoerucin, and gluconasturtiin—in ten traditional Chinese plants. The samples were extracted with methanol and the extracts were cleaned on an activated Florisil column. A mobile phase gradient prepared from methanol and 30 mmol L−1 ammonium acetate at pH 5.0 enabled baseline separation of the glucosinolates. Glucosinolate detection was confirmed by quadrupole time-of-flight tandem mass spectrometric analysis in negative-ionization mode. Detection limits ranged from 0.06 to 0.36 μg g−1 when 5 g of dried plant was analyzed. Recoveries of the glucosinolates were better than 85% and precision (relative standard derivation, n = 3) ranged from 5.3 to 14.6%. Analysis of the glucosinolates provided scientific evidence enabling differentiation of three pairs of easily confused plants. Figure Glucosinolates Analysis for the Differentiation of Easily-Confusing Herbs  相似文献   

9.
A rapid and reliable method was developed and applied for the simultaneous determination of 17 organochlorine pesticides (OCPs) in propolis. After extraction with hexane and acetone (1:1, v/v), four sorbents (florisil, silica, graphitized carbon, and tandem graphitized carbon plus florisil) were assayed for the clean-up step. The elution solvents hexane and ethyl acetate (1:1, v/v), hexane and dichloromethane (3:7, v/v), and ethyl acetate and hexane (2:8, v/v) were studied. The results showed that the combination of the tandem graphitized carbon and florisil cartridge with the elution solvent of 6mL of ethyl acetate and hexane (2:8, v/v), which was capable of eliminating matrix interference and providing colorless eluates, was the most efficient clean-up procedure for propolis extracts when testing for OCPs. The analytical technique employed was gas chromatography with electron capture detection (GC–ECD). The correlation coefficients from linear regression for the analyzed concentrations (5∼100 μg/kg) were >0.9961. The limits of detection (LODs) varied between 0.8 μg/kg for 4,4′-DDE and 11.4 μg/kg for endosulfan II, and the limits of quantitation (LOQs) ranged from 2.6 to 38.1 μg/kg. The average recoveries varied between 62.6 and 109.6%. Relative standard deviations (RSD%) ranged from 0.8 to 9.4%. Sample analysis indicated that 4,4′-DDE was detected more often in propolis than other pesticides, such as β-HCH, δ-HCH and heptachlor. Figure GC-ECD chromatogram of a standard solution with 0.1 mg/L of OCPs  相似文献   

10.
A multiresidue method for determining 22 polychlorinated biphenyls (PCBs) in air has been developed and validated by gas chromatography (GC) coupled to tandem mass spectrometry (MS/MS) using a triple quadrupole analyzer (QqQ). The method was validated in terms of both steps of sampling and analysis. The sampling method, which is based on active sampling using polyurethane foam (PUF) as adsorbent, was validated by generating standard atmospheres. The retention capacity of this sampling sorbent allows up to 5 m3 of air to be sampled without any breakthrough for most compounds. Two solvent extraction methods were compared: sonication and Soxhlet extraction with a mixture of n-hexane:diethyl ether (95:5 v/v). Both extraction methods yielded similar results, but the first one required less solvent and time. The method exhibited good accuracy (80.3–99.8%), precision (2.2–15.2%) and lower limits that allowed quantification and confirmation at levels as low as 0.008 ng/m3. Finally, the method was applied to the analysis of PCBs in the air in areas near to a municipal solid-waste landfill and directly above the refuse in the landfill, where it indicatedd the presence of some of the target compounds. Figure General chemical structure of polychlorinated biphenyls  相似文献   

11.
12.
An X-ray fluorescence method (XRF) is presented that allowed low detection limits (at the 0.1–23 ng mL−1 level) to be obtained for Cr, Mn, Fe, Ni, Zn, Sr, Pb, Bi and Br in water. The samples were prepared using a thin layer method. Trace elements were determined via the calibration curve and standard addition. Absorption effects and inhomogenities in prepared samples were checked for using the emission–transmission method and internal standards, respectively. The results from the XRF method were compared with the results from the inductively coupled plasma atomic emission spectrometry method.   相似文献   

13.
A rapid easy-to-use immunoassay was optimised for the non-instrumental detection of ochratoxin A (OTA) in beer. The analytical method involves preconcentration on the immunoaffinity layer inside a column followed by direct competitive ELISA detection in the same layer. The visual cut-off value, i.e. the lowest OTA concentration resulting in no colour development, was 0.2 μg L-1. Assay validation was performed using samples spiked with OTA. Thirty-seven naturally contaminated samples were screened with the gel-based method developed and no false-negative results were obtained. The method described offers a simple, rapid and cost-effective screening tool, thus contributing to better health protection of consumers. Figure Gel-based immunoassay of spiked beer samples.  相似文献   

14.
The simultaneous use of several fluorescent reporter dyes in a multicomponent boronic acid-based glucose sensing system is reported. In one application, two dyes with widely different emission wavelengths are used to report changes in glucose concentration. A third glucose-insensitive dye was then added to act as a reference dye and provide for a ratiometric correction to the two reporter dye signals. The inclusion of such a reference dye reduces errors arising from sources such as fluctuations in lamp intensity and sample dilution. The simultaneous use of multiple fluorescent reporter dyes  相似文献   

15.
This paper describes a liquid chromatographic/tandem mass spectrometric (LC/MS–MS) method specifically designed for the screening of synthetic glucocorticosteroids in human urine. The method is designed to recognize a common mass spectral fragment formed from the particular portion of the molecular structure that is common to all synthetic glucocorticosteroids and that is fundamental to their pharmacological activity. As such, the method is also suitable for detecting unknown substances, provided they contain the portion of the molecular structure selected as the analytical target. The effectiveness of this approach was evaluated on seventeen synthetic glucocorticosteroids. Urine samples, including blank urines spiked with one or more synthetic glucocorticosteroids, were treated according to a standard procedure (enzymatic hydrolysis, liquid/liquid extraction and evaporation to dryness) and analyzed using LC/MS-MS with electrospray ionization (ESI). MS–MS acquisition was carried out in a precursor ion scan, and the results were compared with those obtained by a previously developed reference technique based on acquisition in the multiple reaction monitoring (MRM) mode. All of the glucocorticosteroids considered in this study are clearly detectable in urine, with a limit of detection in the concentration range 5–20 ng/mL, depending on the glucocorticosteroid structure. The proposed method is therefore suitable for the detection of glucocorticosteroids in urine samples taken for “in competition” sport anti-doping control tests, matching the requirements of the World Anti-Doping Agency (WADA) for accredited anti-doping laboratories. Figure Structures of the synthetic glucocorticoids considered in this study  相似文献   

16.
17.
We quantitatively modeled the volume phase transition of a hydrogel containing a crystalline colloidal array with a crown ether ligand which binds Pb2+. The hydrogel volume response and the wavelength diffracted depend on the Pb2+ concentration and on both the ionic strength and the valence of the nonbinding ionic species. We successfully modeled the response of this hydrogel Pb2+ sensor to ionic strength and the cation valence of the added salts. Figure Cation identity dependence of crown ether photonic crystal Pb+ sensing  相似文献   

18.
Templating is an effective way for the structural modifications of a material and hence for altering its functional properties. Here protein imprinting was exploited to alter polymeric polyacrylamide (PAA) membranes. The sieving properties and selection abilities of the material formed were evaluated by studying the electrically driven transport of various proteins across templated PAA membranes. The sieving properties correlated with the templating process and depended on the quantity of template used during the polymerisation. For 1 mg/mL protein-templated membranes a ‘gate effect’ was shown, which induced a preferential migration of the template and of similar-size proteins. Such template preferential electrotransport was exploited for the selective removal of certain proteins in biological fluids prior to proteome analysis (depletion of albumin from human serum); the efficiency of the removal was demonstrated by analysing the serum proteome by two-dimensional electrophoresis experiments. Figure PAA templeted membrane for the electroremoval of serum albumin before proteome analysis  相似文献   

19.
Over a 6.5-year period a total of 2554 values were reported by nine laboratories for 259 certified or reference nutrient concentrations in 26 certified reference materials (CRM) submitted to contract laboratories, blinded, as part of the qualifying process for analytical contracts and in the routine sample stream as part of the National Food and Nutrient Analysis Program. Each value was converted to a Z′-score, reflecting the difference from the assigned value related to the combined expected analytical uncertainty plus the uncertainty in the CRM value. Z′-scores >|3.0| were considered unacceptable. For some nutrients (Na, folate, dietary fiber, pantothenic acid, thiamin, tocopherols, carotenoids, monounsaturated, and polyunsaturated fatty acids), >20% of Z′-scores were >|3.0|. For total fat, vitamin C, and niacin >25% of Z′-scores were >|2.0|. Components for which CRM data were best (more than 90% of Z′-scores <|2.0|) were Mg, P, Mn, Se, and vitamin B12. In some cases deviations from assigned values were not uniform across laboratories and materials. For Na almost all high Z′-scores were for low-Na matrices, suggesting analytical problems related to concentration. Figure Z′-scores for vitamins in certified reference materials Disclaimer: Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, or the United States Department of Agriculture, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.  相似文献   

20.
A chemical prototype sensor was constructed based on nanofiber-structured TiO2 and highly sensitive quartz resonators. The gas-sensing behavior of this new sensor to selected simulant warfare agents was investigated at room temperature. Results showed rapid response and good reversibility of this sensor when used with high-purity nitrogen. This provides a simple approach to preparation of materials needed as chemical sensors for selected organic volatiles or warfare agents. Figure Sensing behavior of TiO2 nanofiber sensor to chemical vapors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号