首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
A one-step immunomagnetic separation technique was performed on a microfluidic platform for the isolation of specific cells from blood samples. The cell isolation and purification studies targeted T cells, as a model for low abundance cells (about 1:10,000 cells), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from human blood and from reconstituted blood samples. Quantitative polymerase chain reaction analysis of the captured cells was used to characterize the efficiency of T cell capture in a variety of flow path designs. Employing many (4-8), 50 microm deep narrow channels, with the same overall cross section as a single, 3 mm wide channel, was much more effective in structuring dense enough magnetic bead beds to trap cells in a flowing stream. The use of 8-multiple bifurcated flow paths increased capture efficiencies from approximately 20 up to 37%, when compared to a straight 8-way split design, indicating the value of ensuring uniform flow distribution into each channel in a flow manifold for effective cell capture. Sample flow rates of up to 3 microL min(-1) were evaluated in these capture beds.  相似文献   

2.
 In channels with dimensions much less than 1 mm, fluids with viscosities similar to or higher than that of water and flowing at low velocities exhibit laminar behavior. This allows the adjacent flow of fluids and particles in a channel without mixing other than by diffusion. We demonstrate here the use of a 3-input microfluidic device known as a T-Sensor for the analysis of blood. A sample solution (e.g. whole blood), a receptor solution (e.g. an indicator solution), and a reference solution (a known analyte standard) are introduced into a common channel (T-Sensor), and flow side by side until they leave the structure. Smaller particles such as ions or small proteins diffuse rapidly across the fluid boundaries, whereas larger molecules diffuse more slowly. Large particles (e.g. blood cells) show no significant diffusion within the time the flow streams are in contact. Two interface zones are formed between the fluid layers. The ratio of a property (e.g. fluorescence intensity) of the outer portions of the two interface zones is a function of the concentration of the analyte, and is largely free of cross-sensitivities to other sample components and instrument parameters. This device allows, for example, one-time or continuous monitoring of the concentration of analytes in microliters of whole blood without the use of membranes or prior removal of blood cells. The principle is illustrated by the determination of pH and human albumin in whole blood and serum. Results are also presented for zero-gravity experiments performed with a T-Sensor on board a NASA experimental plane. Due to its microfluidic flow characteristics, a T-Sensor functions independently of orientation and strength of the gravitational field. This was demonstrated by exposing a T-Sensor to variations in gravity from 0 to 1.8 g in a NASA KC135A plane flying repetitive parabolic flight curves. Received May 22, 1998. Revision November 10, 1998.  相似文献   

3.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   

4.
Lim EJ  Ober TJ  Edd JF  McKinley GH  Toner M 《Lab on a chip》2012,12(12):2199-2210
Inertial microfluidics has demonstrated the potential to provide a rich range of capabilities to manipulate biological fluids and particles to address various challenges in biomedical science and clinical medicine. Various microchannel geometries have been used to study the inertial focusing behavior of particles suspended in simple buffer solutions or in highly diluted blood. One aspect of inertial focusing that has not been studied is how particles suspended in whole or minimally diluted blood respond to inertial forces in microchannels. The utility of imaging techniques (i.e., high-speed bright-field imaging and long exposure fluorescence (streak) imaging) primarily used to observe particle focusing in microchannels is limited in complex fluids such as whole blood due to interference from the large numbers of red blood cells (RBCs). In this study, we used particle trajectory analysis (PTA) to observe the inertial focusing behavior of polystyrene beads, white blood cells, and PC-3 prostate cancer cells in physiological saline and blood. Identification of in-focus (fluorescently labeled) particles was achieved at mean particle velocities of up to 1.85 m s(-1). Quantitative measurements of in-focus particles were used to construct intensity maps of particle frequency in the channel cross-section and scatter plots of particle centroid coordinates vs. particle diameter. PC-3 cells spiked into whole blood (HCT = 45%) demonstrated a novel focusing mode not observed in physiological saline or diluted blood. PTA can be used as an experimental frame of reference for understanding the physical basis of inertial lift forces in whole blood and discover inertial focusing modes that can be used to enable particle separation in whole blood.  相似文献   

5.
Gurkan UA  Anand T  Tas H  Elkan D  Akay A  Keles HO  Demirci U 《Lab on a chip》2011,11(23):3979-3989
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.  相似文献   

6.
We developed a Raman‐compatible chip for isolating microorganisms from complex media. The isolation of bacteria is achieved by using antibodies as capture molecules. Due to the very specific interaction with the targets, this approach is promising for isolation of bacteria even from complex matrices such as body fluids. Our choice of capture molecules also enabled the investigation of samples containing yet unidentified bacteria, as the antibodies can capture a large variety of bacteria based on their analogue cell wall surface structures. The capability of our system is demonstrated for a broad range of different Gram‐positive and Gram‐negative germs. Subsequent identification is done by recording Raman spectra of the bacteria. Further, it is shown that classification with chemometric methods is possible.  相似文献   

7.
A simple and sensitive gas chromatographic method for the quantitative determination of butaperazine in biological fluids is described. The use of a nitrogen specific detector reduces the number of interfering peaks, thereby increasing the number of samples that can be analyzed. When butaperazine is extracted from 2 ml of plasma, the coefficient of variation is 7.4% over the concentration range of 5-180 ng/ml. The method was used to measure the levels in plasma and red blood cells in schizophrenic patients treated with butaperazine. It was also extended to measure butaperazine levels in rat red blood cells, plasma, liver, and brain after intraperitoneal injection (15 mg/kg).  相似文献   

8.
The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1–2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5 μm, and in depth from 20 to 5 μm. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5 μm spacing all on one device. The first 20 μm wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10 μm deep and the second type is 20 μm deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.  相似文献   

9.
Circulating tumor cells (CTCs) are an important biomarker for cancer prognosis and treatment monitoring. However, the heterogeneity of the physical and biological properties of CTCs limits the efficiency of various approaches used to isolate small numbers of CTCs from billions of normal blood cells. To address this challenge, we developed a lateral filter array microfluidic (LFAM) device to integrate size‐based separation with immunoaffinity‐based CTC isolation. The LFAM device consists of a serpentine main channel, through which most of a sample passes, and an array of lateral filters for CTC isolation. The unique device design produces a two‐dimensional flow, which reduces nonspecific, geometric capture of normal cells as typically observed in vertical filters. The LFAM device was further functionalized by immobilizing antibodies that are specific to the target cells. The resulting devices captured pancreatic cancer cells spiked in blood samples with (98.7±1.2) % efficiency and were used to isolate CTCs from patients with metastatic colorectal cancer.  相似文献   

10.
J Zhu  T Nguyen  R Pei  M Stojanovic  Q Lin 《Lab on a chip》2012,12(18):3504-3513
Isolation of cells from heterogeneous mixtures is critically important in both basic cell biology studies and clinical diagnostics. Cell isolation can be realized based on physical properties such as size, density and electrical properties. Alternatively, affinity binding of target cells by surface-immobilized ligands, such as antibodies, can be used to achieve specific cell isolation. Microfluidics technology has recently been used in conjunction with antibody-based affinity isolation methods to capture, purify and isolate cells with higher yield rates, better efficiencies and lower costs. However, a method that allows easy release and collection of live cells from affinity surfaces for subsequent analysis and detection has yet to be developed. This paper presents a microfluidic device that not only achieves specific affinity capture and enrichment, but also enables non-destructive, temperature-mediated release and retrieval of cells. Specific cell capture is achieved using surface-immobilized aptamers in a microchamber. Release of the captured cells is realized by a moderate temperature change, effected via integrated heaters and a temperature sensor, to reversibly disrupt the cell-aptamer interaction. Experimental results with CCRF-CEM cells have demonstrated that the device is capable of specific capture and temperature-mediated release of cells, that the released cells remain viable and that the aptamer-functionalized surface is regenerable.  相似文献   

11.
Researchers are actively developing devices for the microanalysis of complex fluids, such as blood. These devices have the potential to revolutionize biological analysis in a manner parallel to the computer chip by providing very high throughput screening of complex samples and massively parallel bioanalytical capabilities. A necessary step performed in clinical chemistry is the isolation of plasma from whole blood, and effective sample preparation techniques are needed for the development of miniaturized clinical diagnostic devices. This study demonstrates the use of passive, operating entirely on capillary action, transverse-flow microfilter devices for the microfluidic isolation of plasma from whole blood. Using these planar microfilters, blood can be controllably fractionated with minimal cell lysis. A characterization of the device performance reveals that plasma filter flux is dependent upon the wall shear rate of blood in the filtration channel, and this result is consistent with macroscale blood filtration using microporous membranes. Also, an innovative microfluidic layout is demonstrated that extends device operation time via capillary action from seconds to minutes. Efficiency of these microfilters is approximately three times higher than the separation efficiencies predicted for microporous membranes under similar conditions. As such, the application of the microscale blood filtration designs used in this study may have broad implications in the design of lab-on-a-chip devices, as well as the field of separation science.  相似文献   

12.
Immunoaffinity microfluidic devices have recently become a popular choice to isolate specific cells for many applications. To increase cell capture efficiency, several groups have employed capture beds with nanotopography. However, no systematic study has been performed to quantitatively correlate surface nanopatterns with immunoaffinity cell immobilization. In this work, we controlled substrate topography by depositing close-packed arrays of silica nanobeads with uniform diameters ranging from 100 to 1150 nm onto flat glass. These surfaces were functionalized with a specific antibody and assembled as the base in microfluidic channels, which were then used to capture CD4+ T cells under continuous flow. It is observed that capture efficiency generally increases with nanoparticle size under low flow rate. At higher flow rates, cell capture efficiency becomes increasingly complex; it initially increases with the bead size then gradually decreases. Surprisingly, capture yield plummets atop depositions of some particle diameters. These dips likely stem from dynamic interactions between nanostructures on the substrate and cell membrane as indicated by roughness-insensitive cell capture after glutaraldehyde fixing. This systematic study of surface nanotopography and cell capture efficiency will help optimize the physical properties of microfluidic capture beds for cell isolation from biological fluids.  相似文献   

13.
A spectroscopic method based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has been developed for reagent-free analysis of blood and urine constituents in the clinical laboratory and for point-of-care-applications. Blood plasma, whole blood, and urine were analyzed without any sample preparation, such as drying, concentration, or enrichment. Sample volumes as small as 5 μL (a single drop of blood) can be used. Mathematical models, including partial least-squares regression, were used to construct a prediction model which can calculate the concentration of albumin, cholesterol, glucose, total protein, urea, and triglycerides in whole blood or blood plasma samples and the concentration of urea, uric acid, phosphate and creatinine in urine samples. The absolute precision and reproducibility of the prediction reached is sufficient for routine clinical analysis and is only limited by the precision of the reference analysis used for calibration. This was achieved by use of a large number of calibration samples (approx. 400 for blood samples and approx. 100 for urine samples) carefully selected for physiological and pathological range and for specific disease profiles.  相似文献   

14.
The ability to effectively detect disease-related DNA biomarkers and drug delivery nanoparticles directly in blood is a major challenge for viable diagnostics and therapy monitoring. A DEP method has been developed which allows the rapid isolation, concentration and detection of DNA and nanoparticles directly from human and rat whole blood. Using a microarray device operating at 20 V peak-to-peak and 10 kHz, a wide range of high molecular weight (HMW)-DNA and nanoparticles were concentrated into high-field regions by positive DEP, while the blood cells were concentrated into the low-field regions by negative DEP. A simple fluidic wash removes the blood cells while the DNA and nanoparticles remain concentrated in the DEP high-field regions where they can be detected by fluorescence. HMW-DNA could be detected at 260 ng/mL, which is a detection level suitable for analysis of disease-related cell-free circulating DNA biomarkers. Fluorescent 40 nm nanoparticles could be detected at 9.5 × 10(9) particles/mL, which is a level suitable for monitoring drug delivery nanoparticles. The ability to rapidly isolate and detect DNA biomarkers and nanoparticles from undiluted whole blood will benefit many diagnostic applications by significantly reducing sample preparation time and complexity.  相似文献   

15.
The limitations of the generally accepted photostationary approximation in the photochemistry of provitamin D resulting from the strong spectral dependence of the effectiveness of the irreversible channel were established theoretically by a simplified model. The results show clearly that disregard of the irreversible channel with low quantum yield in a system of reversible photochemical reactions over a wide spectral range is not always justified. As a result the approximation according to which the concentration of the main photoisomers of provitamin D is constant only holds in a specific region of the spectrum, and this must be taken into account during concentration analysis of the photoisomeric mixture. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 5, pp. 279–283, September–October, 2006.  相似文献   

16.
The determination of tissue type is important when reconstructing a crime scene as skin cells may indicate innocent contact, whereas other types of cells, such as blood and semen, may indicate foul play. Up to now, there has been no specific DNA methylation-based marker to distinguish skin cell DNA from other body fluids. The goal of this study is to develop a DNA methylation-based assay to detect and identify skin cells collected at forensic crime scenes for use in DNA typing. For this reason, we have utilized a DNA methylation chip array-based genome-wide association study to identify skin-specific DNA methylation markers. DNA obtained from skin along with other body fluids, such as semen, saliva, blood, and vaginal epithelia, were tested using five genes that were identified as sites for potential new epigenetic skin markers. Samples were collected, bisulfite converted, and subjected to real-time polymerase chain reaction (PCR) with high-resolution melt analysis. In our studies, when using WDR11, PON2, and NHSL1 assays with bisulfite-modified PCR, skin/sweat amplicons melted at lower temperatures compared to blood, saliva, semen, and vaginal epithelia. One-way analysis of variance demonstrates that these three skin/sweat markers are significantly different when compared with other body fluids (p < 0.05). These results demonstrate that high-resolution melt analysis is a promising technology to detect and identify skin/sweat DNA from other body fluids.  相似文献   

17.
In this work, we present an optical transit DEP flow cytometer for parallel single-cell analysis. Each cell's dielectric property is inferred from velocity perturbations due to DEP actuation in a microfluidic channel. Dual LED sources facilitate velocity measurement by producing two transit shadows for each cell passing through the channel. These shadows are detected using a 256-pixel linear optical array detector. Massively parallel analysis is possible as each pixel of the detector can independently analyze the passing cells. A wide channel (∼18 mm) was employed to carry many particles simultaneously, and the system was capable of detecting the velocity of over 200 cells simultaneously. We have achieved analysis rates for 10 µm diameter polystyrene spheres response exceeding 250 per second. With appropriate calibration, this DEP cytometer can quantitatively measure the dielectric response. The dielectric response (Clausius–Mossotti factor) of viable CHO cells was measured over the frequency range of 100 kHz to 6 MHz, and the obtained response matches the previously measured values by our group. The DEP cytometer uses simple modular components to achieve high throughput label-free single-cell dielectric analysis and can begin analyzing particles within 10 s after starting to pump the sample into the channel.  相似文献   

18.
Rheological, elongational flow, and scanning electron microscopy measurements have been performed on cationic monomers associated with specific counterions. The monomers are formed through the reaction of allyl bromide and a variety of dimethylalkylamine derivatives. The results show that above a specific monomer–counterion concentration, highly elongated structures are formed in solution. These structures are adequately described as polymerizable rod-like micelles. The physical properties of these fluids are interpreted in terms of a micellar sphere to rod transition which gradually occurs over a specific concentration range (>1g/dL, in general). At higher concentrations, these rod-like entities are capable of interacting with each other. Therefore, even though the forces holding the structures together are certainly weaker than a chemical bond, polymeric-like properties are observed in these polymerizable viscoelastic fluids.  相似文献   

19.
Bhagat AA  Hou HW  Li LD  Lim CT  Han J 《Lab on a chip》2011,11(11):1870-1878
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ~10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.  相似文献   

20.
We report a new tuneable alternating current (ac) electrohydrodynamics (ac‐EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac‐EHD field strength. The ability to manipulate ac‐EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over nonspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof‐of‐concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90 %; % RSD=2, n=3) with a 10‐fold reduction in nonspecific adsorption of non‐target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac‐EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号