首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscosity of moderately dilute polymer solutions is formulated on the postulates that in this concentration region is governed by the domain volume per polymer segment and the noddle effect due to entangling chains. The former is treated semi-molecular theoretically, and the latter entirely phenomenologically. All the parameters involved in the theory can be estimated from appropriate dilute solution data as well as the asymptotic molecular-weight dependence of at different concentrations. It is shown that the theory describes almost quantitatively the experimental data obtained by Hamada and Adam and Delsanti for polystyrene in benzene and cyclohexane. Part of these data reveals the breakdown of the semidilute solution approximation used in the theory.  相似文献   

2.
The Gaussian closure method and Brownian dynamics simulations have been used to calculate the shear material properties of a dilute solution of Hookean dumbbells with internal viscosity. Results for the zero-shear-rate material properties and small amplitude oscillatory shear material properties have been found analytically, and numerical results for the steady state shear material properties are also presented. Two interpretations of the stress tensor are investigated and results are compared. Brownian dynamics simulations are used to obtain material properties of the Hookean dumbbell with internal viscosity without approximations. These simulation results are compared with the perturbation solution of Booij and van Wiechen as well as with a new Gaussian closure solution. Also presented are the contracted distribution functions as derived from the Gaussian closure method and from Brownian dynamics simulations.  相似文献   

3.
Polymer melt elongation is one of the most important procedures in polymer processing. To understand its molecular mechanisms, we constructed an elongational flow opto-rheometer (EFOR) in which a high precision birefringence apparatus of reflection-double path type was installed into a Meissner's new elongational rheometer of a gas cushion type (commercialized as RME from Rheometric Scientific) just by mounting a small reflecting mirror at the center of the RME's sample supporting table. The EFOR enabled us to achieve simultaneous measurements of tensile stress (t) and birefringence n(t) as a function of time t under a given constant strain rate within the range of 0.001 to 1.0s–1. (t) can be monitored upto the maximum Hencky strain (t) of 7 as attained, in principle, with RME, while the measurable range of the phase difference in the birefringence was 0 to 250 (0 to 79 100 nm for He-Ne laser light) within the accuracy of ±0.1 (±31.6 nm) up to (t) 4. The performance was tested on an anionically polymerized polystyrene (PS) and a low density polyethylene (LDPE). For both polymers (t) first followed the linear viscoelasticity rule in that the elongational viscosity, , is three times the steady shear viscosity, 3 o(t), at low shear rate , but the E (t) tended to deviate upward after a certain Hencky strain was attained. The birefringence n(t) was a function of both Hencky strain and strain rate in such a way that the stress-optical law holds with the stress-optical coefficient C(t) = n(t)/(t) being equal to the ones reported from shear flow experiments. Interestingly, however, for PS elongated at low strain rates the C(t) vs (t) relation exhibited a strong nonlinearity as soon as (t) reached steady state. This implies that the tensile stress reaches the steady state but the birefringence continues to increase in the low strain-rate elongation. For the PS melt elongated at high strain rates, on the other hand, C(t) was nearly a constant in the entire range observed. For LDPE with long-chain branchings, (t) exhibited tendency of strain-induced hardening after certain critical strain, but C(t) was nearly a constant in the entire range of (t) observed.  相似文献   

4.
The shear and extensional rheology of three concentrated poly(ethylene oxide) solutions is examined. Shear theology including steady shear viscosity, normal stress difference and linear viscoelastic material functions all collapse onto master curves independent of concentration and temperature. Extensional flow experiments are performed in fiber spinning and opposed nozzles geometries. The concentration dependence of extensional behavior measured using both techniques is presented. The zero-shear viscosity and apparent extensional viscosities measured with both extensional rheometers exhibit a power law dependence with polymer concentration. Strain hardening in the fiber spinning device is found to be of similar magnitude for all test fluids, irrespective of strain rate. The opposed nozzle device measures an apparent extensional viscosity which is one order of magnitude smaller than the value determined with the fiber spinline device. This could be attributed to errors caused by shear, dynamic pressure, and the relatively small strains developed in the opposed nozzle device. This instrument cannot measure local kinematics or stresses, but averages these values over the non-homogenous flow field. These results show that it is not possible to measure the extensional viscosity of non-Newtonian and shear thinning fluids with this device. Fiber spin-line experiments are coupled with a momentum balance and constitutive model to predict stress growth and diameter profiles. A one-mode Giesekus model accurately captures the plateau values of steady and dynamic shear properties, but fails to capture the gradual shear thinning of viscosity. Giesekus model parameters determined from shear rheology are not capable of quantitatively predicting fiber spinline kinematics. However, model parameters fit to a single spinline experiment accurately predict stress growth behavior for different applied spinline tensions.  相似文献   

5.
The steady and dynamic shear properties of two non-aqueous drag-reducers (a medium molecular weight polyisobutylene and a commercial organic drag-reducer) in kerosene solutions over a wide range of temperature and concentration were presented. The intrinsic and zero-shear viscosity results were used to identify the concentrate regimes of these solutions. A characteristic time constant λ0, which was based on the spring-bead model for dilute solutions, was employed as the scaling parameter for both steady-shear and dynamic data over a wide range of concentration and temperature. The inadequacy of the Graessley reduced-variable method in the dilute region was illustrated. The shear-thinning behaviour of these polymer solutions could be described by the Carreau model. The dynamic data followed the Zimm and Rouse-like behaviour in the low and high frequency limits. The Cox-Merz rule was obeyed in the low shear rate and frequency regions. The Carreau and the zero-frequency Maxwell time constants appeared to be related to λ0 by a constant factor over a wide range of polymer concentrations. The finding provides a method for extrapolating viscoelastic information into the drag reduction regime, and could be useful for interpretation of drag reduction results.  相似文献   

6.
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.The English text was polished by Yunming Chen.  相似文献   

7.
Hydrodynamic interactions on dilute solutions of spherical beads under shear flow are calculated with the method of induced forces. The Navier-Stokes equation is considered in the Stokes approximation. Hydrodynamic interactions cause the drag to be anisotropic in space.Numerical solutions are obtained for the added stress, caused by polymeric molecules in solution in a narrow channel under shear flow. The polymeric molecules are considered as Hookean spring-dumbbells.Slip velocity and the effective viscosity are obtained taking different dumbbells' bead radii. Transversal migration in the channel is obtained for different bead radii.  相似文献   

8.
This paper presents a survey of undisturbed flows that take one or another of the field equations of inviscid shear flow instability theory (e.g. theRayleigh equation,Taylor-Goldstein-Haurwitz equation or theKuo equation) to a differential equation satisfied by aknown transcendental function forarbitrary complex values of the parameters. Some mean velocity profiles having this feature are well known. Thus, piecewise linear mean velocity profiles take theRayleigh equations to a constant-coefficient differential equation and the exponential mean velocity profile takes theRayleigh equation to theGauss hypergeometric equation. Less well known is the fact that a variety of mean velocity profiles take theRayleigh equation to a differential equation due toKarl Heun. These profiles include: (i) the sinusoidal profile; (ii) the hyperbolic tangent profile (an example pointed out byMiles (1963)); (iii) the profile in the form of the square of a hyperbolic secant (theBickley jet); and, (iv) a skewed velocity profile in which each component has the form of a quadratic function of the variable exp(–z/l) (in whichz is the cross-stream coordinate andl is a length scale). In all of these cases, one or another author has previously identified aregular neutral mode solution of theRayleigh equation and has expressed that solution in the form of elementary functions. Such regular neutral modes apparently represent cases in which the solution ofHeun's equation (which is normally an infinite series) truncates to a single term. The survey concludes by noting that the parabolic mean velocity profile takes theRayleigh equation to thedifferential equation of the spheroidal wave function.Dedicated to Mårten T. Landahl on the occasion of his sixty-fifth birthday by a former apprentice as a token of his respect and gratitude.  相似文献   

9.
10.
This paper considers nonlinear equations describing the propagation of long waves in two-dimensional shear flow of a heavy ideal incompressible fluid with a free boundary. A nine-dimensional group of transformations admitted by the equations of motion is found by symmetry methods. Two-dimensional subgroups are used to find simpler integrodifferential submodels which define classes of exact solutions, some of which are integrated. New steady-state and unsteady rotationally symmetric solutions with a nontrivial velocity distribution along the depth are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 41–54, September–October, 2008.  相似文献   

11.
An experimental device was set up for the synchronous measurement of velocities and stresses in polyisobutylenes using laser-Doppler velocimetry (LDV) and the two-colour flow-induced birefringence method (FIB). The materials investigated are three low molecular polyisobutylenes. Velocity (LDV) and stress (FIB) measurements are performed in the flow entrance region and inside a slit die with a contraction ratio of 1:10. The behaviour of the polyisobutylenes is Newtonian under the flow conditions applied. Therefore, the stresses inside the fluids can be calculated and compared to the stresses experimentally determined. A good agreement in shear and elongational flows was found between the calculated (LDV) and directly measured stresses (FIB). This result demonstrates the applicability of the experimental setup as an optical rheometer that can preferentially be used to measure elongational properties of low viscous fluids.
Helmut MünstedtEmail:
  相似文献   

12.
The response of a considerable number of solutions of several polymers (PEO, HPAM, PAM) with concentrations of less than 100 ppm in orifice flow has been investigated. It is shown that the excess pressure (difference between the ADPS and the solvent total pressure drop) behaves linearly as a function of a superficial strain rate (ratio between a velocity and a length scale). In rheological terms this behaviour is interpreted as the result of a constant elongational viscosity whose values are two to three orders of magnitude larger than the shear viscosity. A formal approach to this phenomenological interpretation is suggested.  相似文献   

13.
A novel approach is presented to study the benchmark problem of flow around spheres in model dilute solutions of monodisperse samples of atactic polystyrene in di-octyl phthalate. Spheres are held stationary on flexible cantilevers of known spring-constant, k, while the polymer solutions are pumped past at controlled flow rates, allowing access to a wide range of Deborah number. In this way the non-Newtonian forces experienced by the spheres can be measured as a function of Deborah number, while detailed observations and measurements of birefringence are made, enabling assessment of macromolecular strain and orientation. In addition the flow field around a sphere has been measured in an a-PS solution. Experiments have been performed on a single sphere and on two spheres axially aligned in the direction of flow. The extensional flow around the downstream stagnation point of the single sphere is found to play a pivotal role in the development of molecular strain and stress, resulting in flow modification and subsequent non-Newtonian behaviour. The flow birefringence in the wake is found to modify severely the flow around a second, downstream, sphere, affecting the non-Newtonian forces encountered by the second sphere. This provides an explanation for the time interval dependent terminal velocity often observed when two spheres follow the same path through viscoelastic liquids.  相似文献   

14.
A diblock copolymer of styrene and isoprene (hydrogenated) is dissolved in C11/C12 n-paraffins and o-xylene (or cyclohexane) mixtures. An unusual type of flow curve is obtained in certain ranges of composition and under certain conditions of preparation. With increasing shear rates, the flow curve is first of the Bingham type, followed by a sudden shear thickening at almost discrete rate of shear and then by a second branch of almost linear increase. Time independent and reproducible behaviour can be achieved. A linear model is proposed and the possible molecular arrangement that corresponds to this model is discussed.Partly presented at the Annual Meeting of the Deutsche Rheologische Gesellschaft, May 13–15, 1985 in Berlin, FRG  相似文献   

15.
 This paper has introduced a pseudo-potential in bond-fluctuation model to simulate oscillatory shear flow of multiple self-avoiding chains in three dimensions following our previous work under simple shear flow. The oscillatory flow field was reasonably reproduced by lattice Monte Carlo simulation using this pseudo-potential neglecting hydrodynamic interaction. By sampling the configuration distribution functions, the macroscopic viscoelasticity of semi-concentrated polymer solution was determined. Both Newtonian and non-Newtonian regimes were studied. The complex modulus and dynamic viscosity exhibit a reasonable power relation with oscillatory frequency, which is consistent with present theories and experiments. Consequently, lattice Monte Carlo simulation has been extended to model free-draining self-avoiding multi chains subject to oscillatory shear flow and to investigate associated viscoelasticity on the molecular level. Received: 1 October 1999 Accepted: 19 October 1999  相似文献   

16.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expres- sion, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

17.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expression, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

18.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

19.
The behavior of a terminally anchored freely-jointed bead-rod chain, subjected to solvent shear flow, was investigated via Brownian dynamics simulations. Previous calculations have been improved by computing the segment density and fluid velocity profiles self-consistently. The segment density distributions, components of the radius of gyration, and chain attachment shear and normal stresses were found to be sensitive to low values of shear rate. Additionally, it was found that the thickness of a model polymer layer was a strong function of the shear rate, and that the functional dependence on shear rate changed dramatically as the chain length increased. For the longest chains studied, the thickness of the model polymer layer first increased as the shear rate increased, passed through a maximum, and then decreased at high shear rates, in accordance with experimental results in theta solvents. These results suggest that a dilute or semi-dilute layer model may explain hydrodynamic behavior previously thought to be due to the entanglements that occur in dense surface bound polymer layers.Nomenclature a i acceleration of bead i - b radius of the beads - d length of the rods connecting the chain beads - d i vector from bead i to bead i + 1 - F i external force applied to bead i - F i b external force on bead i due to Brownian motion of surrounding fluid - F i h external force on bead i due to viscous drag - F i s external force on bead i due to surface interactions - f Stokes drag coefficient - Boltzmann's constant - L h effective hydrodynamic thickness - m i mass of bead i - N number of beads on a model chain - n number of chains anchored to the surface per unit surface area - P segment density distribution P pressure - Q flow in a tube with no surface bound polymer layer - Q a flow in a tube with a surface bound polymer layer - R g vector representation of the radius of gyration - R tube radius - r radial coordinate in the tube geometry - S ij pair hydrodynamic interaction tensor for beads i and j - T i internal chain force in rod i connecting beads i and i + 1 - T X component of the surface attachment force in the direction of the fluid flow - T y component of the surface attachment force perpendicular to the surface - T temperature - v i velocity of the center of mass of bead i - V if average fluid velocity at the location of bead i - v if 0 fluid velocity in the absence of a polymer chain - v if perturbation to the fluid velocity due to hydrodynamic interactions - V b bead volume = 4 b 3/3 - scalar fluid speed in the axial direction down the tube - x axial coordinate in the tube geometry Greek symbols w apparent shear rate - fluid viscosity - polymer layer permeability - volume fraction of space occupied by chain beads - (w)a chain attachment stress perpendicular to the surface - (w)a chain attachment stress in the plane of the surface and in the direction of fluid flow  相似文献   

20.
The steady-state morphology of an immiscible polymer blend in shear flow has been investigated by optical microscopy techniques. The blend is composed by poly-isobutylene (PIB) and poly-dimethylsiloxane (PDMS) of comparable viscosity. Experiments were performed by means of a home-made transparent parallel plate device. The two plates can be independently counterrotated, so that sheared droplets of the dispersed phase can be kept fixed with respect to the microscope point of view, and observed for long times. The distribution of drops and their average size were measured directly during flow at different shear rates and for different blend compositions. It was found that the average drop size in steady-state conditions is a decreasing function of the applied shear rate, and does not depend on blend composition for volume fractions up to 10%. Experiments have proved that, in the shear rate range which could be investigated, the stationary morphology is controlled only by coalescence phenomena, droplet breakup playing no role in determining the size of the dispersed phase. More generally, it has been shown that the steady-state morphology is a function not only of the physical parameters of the blend and of the shear rate, but also of the initial conditions applied to the blend. The steady-state results reported in this paper constitute the first direct experimental confirmation of theoretical models which describe the mechanisms of shear-induced drop coalescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号