首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results of an experimental study of turbulent flow past a flat rib installed at an angle to the free-stream direction are reported. In the experiments, external flows with two different turbulence numbers were used, and the angle of rib inclination to the free stream was varied from 50 to 90°. The experiments were performed for ribs of various heights under conditions with natural and high (13.4 %) free-stream turbulence levels. Visualization tests were performed to elucidate the vortex formation pattern and the direction of flow streamlines. Deformations of the recirculation region and secondary-vortex zone as well as enhanced effects due to 3D flow structure observed on decreasing the angle ϕ, and also notable restructuring of the flow at a high free-stream turbulence intensity, were identified. A comparison between pressure coefficients in different longitudinal sections of the channel is reported for ribs of various heights installed at various angles ϕ. The influence of rib inclination angle, rib height, and free-stream turbulence number on local heat-transfer coefficients and heat-transfer intensification is analysed. This work was financially supported by the Russian Foundation for Basic Research (Grant No. 06-08-00300).  相似文献   

2.
The paper presents results of flow visualization and mass transfer studies for fully developed turbulent flow of air in a square section wind tunnel with repeated chamfered rib roughness on the bottom of the tunnel (rib head chamfer angles ϕ of -15°, 0°, and 15°; relative roughness pitchp/e = 3, 5, 7.5, and 10). Direct video recordings of flow patterns were made using a simple technique of particles visualization. For the positively chamfered closely spaced ribs (p/e <- 5) vigorous vortex shedding has been seen compared to the square or negatively chamfered ribs, which is found to be a function of the Reynolds number. For the widely spaced ribs, the study shows flow separation at the ribs and reattachment in the inter-rib region. Local mass transfer studies, based on the variation in colour of cobaltous chloride solution impregnated paper due to evaporation of water, showed a significant improvement in mass transfer rate in the recirculating region in the wake of ribs with the change in the chamfer angle from -15° to 15°. The positively chamfered 15° ribs are found to be better than square section ribs atp/e <- 7.5. The performance of negatively chamfered ribs is found to be poor compared to other ribs irrespective of the relative roughness pitch.  相似文献   

3.
Experimental data on heat transfer in turbulent separation region behind obstacle in a broad frequency range of superimposed free-stream pulsations are reported. The heat-transfer coefficient was determined by solving an inverse non-stationary heat conduction problem based on experimentally measured wall transient temperature. Substantial heat-transfer intensification in the separation region of the pulsating flow was identified. This work was supported by the President of the Russian Federation (Grant NSh-8574.2006.8) and by the Russian Foundation for Basic Research (Grants Nos. 05-02-16263, 06-08-00521, and 07-08-00330).  相似文献   

4.
三维边界层内诱导横流失稳模态的感受性机理   总被引:1,自引:0,他引:1       下载免费PDF全文
陆昌根  朱晓清  沈露予 《物理学报》2017,66(20):204702-204702
边界层感受性问题是层流向湍流转捩的初始阶段,在转捩过程中起关键性作用,尤其是三维边界层流动.因此,研究三维边界层感受性问题对进一步理解层流向湍流转捩机理以及湍流成因具有重要的理论意义.采用数值方法研究自由来流湍流与三维壁面局部粗糙相互作用下三维边界层的感受性问题,确定是否能在三维边界层内寻找一种新的横流失稳模态;确定在何种条件下三维边界层内能诱导出定常、非定常的横流失稳模态;探索自由来流湍流的强度、展向波数和法向波数以及三维壁面局部粗糙的大小和结构类型等因素在自由来流湍流与三维壁面局部粗糙作用下三维边界层内被激发出的感受性过程中有何影响,并确定何种横流失稳模态在三维边界层感受性过程中占据何种地位.对自由来流湍流与三维壁面局部粗糙作用激发三维边界层内感受性问题的深入研究,将有助于完善流动稳定性与湍流理论,为层流向湍流转捩过程的预测与控制提供合理的理论依据.  相似文献   

5.
Turbulence production processes in boundary layer at a high level of free-stream turbulence have been studied. The tests were carried out in the MT-324 subsonic wind tunnel of ITAM, SB RAS, on models of straight and 45° swept wings at Reynolds numbers Rec1 = 97000 and Rec2 = 137000, and also at low (Tu = 0.18 % U ) and high (Tu = 0.79 and 2.31 % U ) levels of free-stream turbulence. The longitudinal localized disturbances developing in the boundary layer under the action of free-stream turbulence were artificially modeled using local air suction through a slot on the model surface. Wave packets, or forerunners, produced in the boundary layer, in the region preceding the abrupt local change of flow velocity near the localized-disturbance fronts, were examined. The high level of free-stream turbulence was found to accelerate the downstream evolution of the wave packets and their transformation into turbulent spots.  相似文献   

6.

In the present study, the turbulent heat transfer and fiction in a square duct roughened by continuous and truncated ribs on one wall has been investigated experimentally. The ribs are oriented transversely to the main stream in a periodic arrangement. For both cases, the rib height-to-hydraulic diameter ratio is 0.15, the rib pitch-to-height ratio is fixed at 12, and the Reynolds number varies from 8,000–20,000. Liquid crystal thermography is applied to demonstrate detailed distribution of heat transfer coefficient between a pair of ribs. The results show that the horseshoe vortices produced by truncated ribs are quite different from the flow structures altered by continuous ribs. It is noted that continuous ribs give higher heat transfer augmentation and pressure drop than truncated ribs. Moreover, the truncated ribs cannot be employed to eliminate hot spots which occur in the corresponding continuous types.  相似文献   

7.
In order to theoretically predict and analyze the vibration response and acoustic radiation characteristics of a periodical orthogonally rib-stiffened plate,its vibro-acoustic equations of an underwater infinite model are established.The rib-stiffened plate is stimulated by a harmonic plane pressure.By using the Fourier transforms,Poisson's summation formula and space harmonic method,the structural vibration response and acoustic radiation pressure are expressed as functions of displacement harmonic components.Efficient semi-analytical methods are proposed in this work,and then approximate solutions for finite terms of the harmonic components are obtained by employing the truncation technique.Effects of the vibration response,rib spacing and torsional moment of the ribs on the radiation pressure are examined,and the validity of the present methods is also verified.Theoretical results show that the torsional moment of the ribs affects the modal frequencies of the stiffened plate,which should not be neglected in engineering applications with high precision requirement.With attachment of the ribs to the thin plate,its far field radiation pressure can be reduced in the low frequency range by adjusting rib spacing and cross sectional size of the ribs.  相似文献   

8.
为了对水下无穷大双周期正交加筋板结构模型在简谐面力激励下的振动响应及声辐射特性进行更为合理的理论预测与分析,建立了加筋板结构的数学模型。结合傅里叶变换、泊松迭加公式及空间波数法,将周期加筋板的振动响应及辐射声压表达为关于结构位移谐波分量的函数方程,对加筋板模型提出了高效分析求解方法并进行了谐波分量截断求解。验证了方法的正确性,并分析了结构的振动特性以及加强筋周期间距和扭矩对辐射声压的影响。结果表明,加强筋的扭转作用影响加筋板结构的振动模态频率,对于较高精度要求的工程应用,加强筋的扭转作用不能忽略。通过调节加强筋周期间距及横截面尺寸,可以降低薄板在较低频域区间的远场辐射声压。   相似文献   

9.
In the present study, the effect of triangular, rectangular and trapezoidal ribs on the laminar heat transfer of water-Ag nanofluid in a ribbed triangular channel under a constant heat flux was numerically studied using finite volume method. Height and width of ribs have been assumed to be fixed in order to study the effect of different rib forms. Modeling were performed for laminar flow (Re=1, 50 and 100) and nanofluid volume fractions of 0, 2% and 4%. The results indicated that an increase in volume fraction of solid nanoparticle leads to convectional heat transfer coefficient enhancement of the cooling fluid, whereas increasing the Nusselt number results in a loss of friction coefficient and pressure. Also, along with the fluid velocity increment, there will be an optimal proportion between heat and hydrodynamic transfer behavior which optimizes performance evaluation criteria (PEC) behavior. Among all of the investigated rib forms, the rectangular one made the most changes in the streamlines and the triangular form has the best thermal performance evaluation criteria values. For all studied Reynold numbers, heat transfer values are least for rectangular rib from. Therefore, trapezoidal ribs are recommended in high Reynold numbers.  相似文献   

10.
In the present paper, we report results of an experimental study of the influence which a vortex-generating element installed upstream of the main obstacle has on the separated flow and heat transfer in a cross-flow cavitytrench. The element was a small cross-flow rib whose height was an order of magnitude smaller than the depth of the cavity. In the experiments, the variable parameters were the angle of inclination of the frontal and rear walls of the cavity, the rib height, and the rib-to-cavity distance. It is shown that the introduction of additional vortical perturbations into the recirculation zone leads to a substantial modification of both the vortex production process and the distributions of pressure and heat-transfer coefficients. Optimal height of the mini-turbulizer and its optimal location are defined by the fall of the re-attachment point of mini-rib-generated flow onto the rear wall of cavity. In the latter situation, the maximal value of the heat-transfer coefficient increases as compared to the case with no vortex generator used, the increase amounting to 30 %.  相似文献   

11.
Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack(AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet(unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.  相似文献   

12.
陆昌根  沈露予 《物理学报》2018,67(21):214702-214702
三维边界层感受性问题是三维边界层层流向湍流转捩的初始阶段,是实现三维边界层转捩预测与控制的关键环节.在高湍流度的环境下,非定常横流模态的失稳是导致三维边界层流动转捩的主要原因;但是,前缘曲率对三维边界层感受性机制作用的研究也是十分重要的课题之一.因此,本文采用直接数值模拟方法研究在自由来流湍流作用下具有不同椭圆形前缘三维(后掠翼平板)边界层内被激发出非定常横流模态的感受性机制;揭示不同椭圆形前缘曲率对三维边界层内被激发出非定常横流模态的扰动波波包传播速度、传播方向、分布规律、感受性系数以及分别提取获得一组扰动波的幅值、色散关系和增长率等关键因素的影响;建立在不同椭圆形前缘曲率情况下,三维边界层内被激发出非定常横流模态的感受性问题与自由来流湍流的强度和运动方向变化之间的内在联系;详细分析了不同强度各向异性的自由来流湍流在激发三维边界层感受性机制的物理过程中起着何种作用等.通过上述研究将有益于拓展和完善流动稳定性理论,为三维边界层内层流向湍流转捩的预测与控制提供依据.  相似文献   

13.
 采用贴体坐标下与Level Set方法相结合的爆轰冲击波动力学(DSD)计算方法,研究了180°圆弧形钝感炸药中非理想爆轰波的传播过程。通过数值模拟计算和实验测量的对比分析,得到了180°圆弧形炸药中爆轰波传播的一些规律:圆弧形钝感炸药可以实现定常爆轰,即在极坐标中整个爆轰波以固定角速度转动。这种定常阵面的形状和角速度与圆弧的外半径无关,定常体系依赖于圆弧形炸药的内半径和覆盖圆弧的外壳物质。对描述圆弧形炸药中爆轰波传播规律的经验公式进行了研究,结果表明这些经验公式能够准确描述爆轰波速度的变化,在实验测量和预估方面具有一定的参考价值。  相似文献   

14.
不同主流进口湍流度下的超音速气膜冷却   总被引:1,自引:0,他引:1  
本文通过数值模拟的方法计算并分析主流进口湍流度、冷却流进口高度和进口马赫数对超音速气膜冷却的影响。计算结果表明,主流进口湍流度对超音速气膜冷却有较大影响,增大主流进口湍流度会减弱超音速气膜冷却效率,同时还表明,增大冷却流进口高度以及进口马赫数,能减弱主流湍流度对超音速气膜冷却的影响。  相似文献   

15.
An adaptive projection method for ultrasonic focusing through the rib cage, with minimal energy deposition on the ribs, was evaluated experimentally in 3D geometry. Adaptive projection is based on decomposition of the time-reversal operator (DORT method) and projection on the "noise" subspace. It is shown that 3D implementation of this method is straightforward, and not more time-consuming than 2D. Comparisons are made between adaptive projection, spherical focusing, and a previously proposed time-reversal focusing method, by measuring pressure fields in the focal plane and rib region using the three methods. The ratio of the specific absorption rate at the focus over the one at the ribs was found to be increased by a factor of up to eight, versus spherical emission. Beam steering out of geometric focus was also investigated. For all configurations projecting steered emissions were found to deposit less energy on the ribs than steering time-reversed emissions: thus the non-invasive method presented here is more efficient than state-of-the-art invasive techniques. In fact, this method could be used for real-time treatment, because a single acquisition of back-scattered echoes from the ribs is enough to treat a large volume around the focus, thanks to real time projection of the steered beams.  相似文献   

16.
In the present paper, we consider one of the most efficient and simple methods to additionally intensify the exchange processes and heat transfer in the separated flow behind a backward-facing step. The method uses small obstacles installed upstream the step; such obstacle act as turbulators smaller in size than the main obstacle. As the turbulators, solid mini ribs, comb ribbings, and wall-detached mini ribs were used. Intensification of the turbulent mixing process behind the main obstacle occurs due to the introduction of small-obstacle-induced 2D and 3D perturbations into the separated shear layer behind the step. Results of a detailed experimental study of the distributions of pressure and heat transfer for different heights of the small intensifier and its positions with respect to the step are reported. The influence of intensifier shape on the thermal and dynamic characteristics of the flow has been analyzed. The distributions of pressure and heat-transfer coefficients were used to evaluate the effectiveness of the various mini obstacles and the limits of their action on the drag and heat transfer.  相似文献   

17.
为探讨加筋对双层结构低频隔声及有源控制的影响,分析了筋条数目及布放位置对双层加筋结构低频隔声性能、有源控制策略选取及有源隔声性能的影响。首先利用模态叠加与声-振耦合理论对双层加筋结构建模,然后采用数值算例对上述问题展开探讨。研究发现,筋条数目增多或筋条靠近基板的中间位置布放,将有利于双层加筋结构低频隔声性能的提高。对于有源控制措施,声控制策略与力控制策略相比,前者的控制效率较高且降噪效果较好。由于筋复杂的耦合影响,添加多条筋或筋条靠基板中间布置时有源控制效果减弱,需施加多个点源才能获得较好的降噪效果。   相似文献   

18.
A three-dimensional offset jet flow over a surface mounted square rib was investigated using particle image velocimetry at Reynolds number of 7600. The square rib was mounted at three different locations downstream of the nozzle exit. Contour and profile plots in the symmetry plane were used to investigate the effect of the rib on the mean flow distribution and turbulence statistics. Changing the rib location enhanced the mixing and entrainment characteristics of the jet thereby leading to larger wall-normal spread rates. The quadrant analysis revealed a significant contribution of all events towards the Reynolds shear stress. The joint probability density function analysis showed that the structures within the outer shear layer of the jet differed from those of boundary layers. Results from the two-point correlation analysis indicated that the introduction of a surface mounted rib modified the flow structures within the developing region. However, there was no significant structural difference between the flow with mounted rib and the no rib case within the self-similar region. The proper orthogonal decomposition was used to examine how changes in rib location modified the dynamics of the energetic modes towards the turbulent kinetic energy and Reynolds shear stress within the developing and self-similar regions.  相似文献   

19.
O. Morita 《Phase Transitions》2013,86(1-4):213-244
Baroclinic flow in a rotating annulus of fluid shows remarkable transitions of flow patterns as do Rayleigh–Benard convection and Taylor vortices. There are four flow regimes in two nondimensional parameter space, called a symmetric regime (Hadley regime), a steady wave regime (Rossby regime), a vacillating wave regime and a geostrophic turbulence regime. Laminar flow in a symmetric regime is formed between the balance of a horizontal pressure gradient force and a Coriolis torque (geostrophic balance), and this flow becomes unstable when one of the nondimensional parameters, the thermal Rossby number, becomes less than the critical value. In this paper, the characteristic features of the four flow regimes are reviewed including recent findings about the behavior of geostrophic turbulence.  相似文献   

20.
Visualization data and results of combined measurements of flow quantities in flow with separation past a rib at nominally laminar regime of channel flow are reported. In the separation region, the flow is found to be essentially three-dimensional and unsteady, exhibiting a distinct cellular structure and flow zones with transverse motion. It is shown that the rib-induced flow separation gives rise to low-frequency fluctuations of flow velocity and initiates the turbulence transition in the channel flow. The critical Reynolds number at which flow instability starts developing in the channel is estimated. It is shown that at Reynolds numbers higher than the critical Reynolds number the linear integral scale of flow velocity fluctuations in the channel is defined by the duct size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号