首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
69,71Ga and 195Pt NMR/NQR measurements have been carried out for the 5f-antiferromagnet, UPtGa5. From a NMR study using a single crystal sample, Knight shift measurements are reported for two different Ga sites and for Pt. The principal axes of the electrical field gradient tensor at both Ga sites have been determined and the values of the splitting parameter νQ and the asymmetry parameter η have been evaluated. The hyperfine coupling constants with the external field along various directions are also reported for the two Ga sites and Pt.  相似文献   

2.
The applicability of 31P nuclear magnetic resonance (NMR) to the study of spinodal decomposition of the pseudo-binary alloys of the type InxGa(1?x.ASyP(1?yis investigated. In particular, this study considers the detection of microscopic phase-segregation in InxGa(1?x.ASyP via the chemical shift of the 31P NMR spectra. This appeared to be a promising approach since the difference between the isotropie chemical shifts of the 31P NMR spectra of InP and GaP is reported in the literature to be over 60 ppm. Based on this relatively large separation between the peaks, it appeared possible to determine the distribution of Ga and In from the distribution of isotropic chemical shifts in the 31P spectrum of InxGa(1?xP. However, more accurate measurements of the chemical shifts of InP, GaP and In0.9Ga0.1P reveal that the spectrum of each compound is centered in the narrow range of 146 to 149 ppm, relative to 85% H3PO4. Consequently, in the presence of large dipolar broadening, it is not possible to calculate the local distribution of Ga and In from the 31P chemical shift data.  相似文献   

3.
NMR and susceptibility measurements have been made on a randomly mixed insulating ferrimagnet and antiferromagnet, MnxZn1-xCr2O4. The thermoremanence and the induced unidirectional anisotropy were observed for concentrations lower than x = 0.80, after field cooling. The compound Mn0.75Mg0.25Cr2O4 shows similar behaviour. When the latter is doped with V3+ at the B sites, its magnetic anisotropy increases strongly, but the change in the unidirectional anisotropy is smooth.  相似文献   

4.
In NMR studies of oriented 54Mn spins in antiferromagnetic MnCl2.4H2O we have observed an unusual behaviour of the γ-ray anisotropy during the spin—lattice relaxation process. It can be understood in terms of the separate responses of the second and fourth rank tensor polarizations.  相似文献   

5.
A study is reported of the Knight shift of 71Ga, 69Ga, and 115In NMR lines in a liquid gallium-indium alloy with a composition of 90 at % Ga and 10 at % In, introduced into porous glasses with pore sizes of 5 and 200 nm, relative to the corresponding shifts in the bulk alloy. The measurements have been performed at room temperature. The study has revealed a size-dependent decrease in the Knight shift. A sample with a 5-nm pore size has demonstrated a noticeable difference in the magnitudes of the Knight shift of both gallium isotopes measured in magnetic fields of 9.4 and 17.6 T, which implies a dependence of the electronic susceptibility of the melt on the magnetic field under the nanoconfinement conditions.  相似文献   

6.
By means of rapid quenching techniques single phased samples of CuxRh1?x(0?x?1) were obtained. For these alloys the Knight shift of 63Cu and 103Rh has been determined employing pulsed NMR at low temperatures, furthermore the magnetic susceptibility was measured for temperatures between 4.2 and 300 K. While the Knight shift of 103Rh is dominated by s-electron contributions in spite of a high density of d-states at the Fermi level, for the susceptibility, however, the d-electron contributions prevail. In addition the susceptibility shows a pronounced maximum at about 10 at.% Cu. Using the extrapolated Knight shift of copper (x→0) we estimate a net copper hyperfine field of — 15 T in close agreement with the corresponding values for CuPd and CuPt.  相似文献   

7.
Magic-angle-spinning (MAS) high-power 1H-decoupled 13C and 31P NMR has been applied to solid biological materials to obtain information about the mechanisms that determine the spectral linewidths. The line broadening in MAS 31P NMR spectra of solid tobacco mosaic virus (TMV) has been investigated by selective saturation and T2 measurements. About 90 Hz stems from homogeneous effects, whereas the inhomogeneous contribution is approximately 100 Hz. The inhomogeneous line broadening is assigned to macroscopic inhomogeneities in the sample and not to variations in the nucleotide bases along the RNA strand in TMV. It is concluded that sample preparation is of vital importance for obtaining well-resolved spectra. Under optimal preparation techniques the isotropic values of the chemical shift of the different 31P sites have been determined to obtain information about the secondary structure of the viral RNA. The chemical shift anisotropy has been determined from the relative intensities of the spinning side bands in the spectra. The chemical shift information is used to make a tentative assignment of the resonance in terms of the three structurally distinguishable phosphate groups in TMV. The origin of the linewidths in MAS NMR has been examined further by 13C NMR of approximately 10% 13C-enriched coat protein of cowpea chlorotic mottle virus, using selective excitation and saturation techniques, as well as measurements of the relaxation times T1γ and T2. The CO resonance in the spectrum is composed of an inhomogeneous and homogeneous part with a total linewidth of 700 Hz. The homogeneous linewidth, contributing with 200 Hz, is found to arise from slow molecular motions in the solid on a millisecond timescale.  相似文献   

8.
Kok-Kwei Pan 《Physica A》2012,391(5):1984-1990
The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law nλ with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.  相似文献   

9.
10.
A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.  相似文献   

11.
Muon spin rotation measurements of the temperature dependence and the anisotropy of the μ+ Knight shift in single crystals of the crystal electric field singlet ground state system PrNi5 reveal pronounced deviations from a linear scaling of the Knight shift with the bulk magnetic susceptibility atT≤50 K. They are explained by a μ+ induced modification of the atomic susceptibility of neighboring Pr3+ ions. From the Knight shift anisotropy atT> 50 K it is determined that the implanted μ+ occupy a single intersitial site, namely the 6i site (0.5, 0, 0.21±0.02). Using this site information, good model fits to the measured data are obtained assuming a μ+ induced perturbation of the crystal electric field at the Pr3+ ions next to the μ+. Apparently, the presence of the μ+ leads to a lowering of the local symmetry, causing a lifting of the degeneracy and a pronounced rearrangement of the low lying crystal electric field levels for these ions.  相似文献   

12.
《Current Applied Physics》2014,14(3):383-388
The magnetic properties and the electronic structures of a rare-earth aluminum intermetallic compound CeAl2 are investigated by magnetic susceptibility measurements and 27Al pulsed nuclear magnetic resonance (NMR) techniques. The magnetic susceptibility is strongly temperature-dependent, following a Curie–Weiss law down to ∼12 K, and shows an antiferromagnetic transition at 4 K. The 27Al NMR spectra show a typical powder pattern for a nuclear spin I of 5/2 with the second-order nuclear quadrupole interaction at high temperature and an additional large dipolar broadening between the 4f electron spins of cerium and the 27Al nuclear spins at low temperature. The 27Al NMR Knight shift follows the same temperature dependence as the magnetic susceptibility, suggesting that the 27Al NMR Knight shift originates from the transferred hyperfine field of the Ce 4f electron spins with the hyperfine coupling constant of A = +5.7 kOe/μB. The spin-lattice relaxation rate 1/T1 is roughly proportional to temperature, as with most non-magnetic metals at high temperature, and then strongly temperature-dependent, increasing rapidly with a peak near the antiferromagnetic transition temperature and decreasing at lower temperature. The temperature dependence of the Korringa ratio K, however, suggests that the antiferromagnetic spin fluctuation signature, which is an enhancement in the Korringa ratio, is washed out owing to the geometrical cancellation of Ce 4f fluctuations at the Al sites.  相似文献   

13.
Free-standing GaN films grown by hydride vapor phase epitaxy (HVPE) on c-plane sapphire have been studied for in-plane anisotropic strain. Lattice parameters are obtained from high-resolution X-ray diffraction data and the film quality is determined by measuring the rocking curves and by 71Ga nuclear magnetic resonance (NMR). The in-plane strain was determined using grazing incidence X-ray diffraction and conventional X-ray measurements. It is found that the in-plane lattice parameter varies with depth and has estimated surface strain anisotropy of 4.0791×10-3 up to a thickness of 0.3 μm. The 71Ga NMR experiments reveal different degrees of inhomogeneity amongst the three samples. This is shown by the appearance of an additional broad central-transition peak shifted to higher frequency by a Knight shift from conduction electrons in sample regions having high carrier concentrations. PACS 72.80.Ey; 61.10.-i; 61.72.Hh  相似文献   

14.
Magnetic susceptibility (χ) and 51V NMR have been measured in (V1−xTix)2O3 near the phase boundary of the metal–insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc≈0.05 is not quantum critical, but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51V NMR spectrum around 181 MHz in addition to the ‘host’ resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x=0.055 sample. We associated the satellite with the V sites near Ti, which are in the V3+-like oxidation state, but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x=0.055 decreases below ∼60 K, but remains finite in the low-temperature limit.  相似文献   

15.
Transverse biased initial susceptibility measurements have been performed in amorphous Y1-xCox films. In the framework of the random anisotropy model for amorphous magnetism, a local anisotropy constant for Co of the order 107 erg/cm3 may be inferred from the results. This agrees with the low symmetry of environments in the amorphous state.  相似文献   

16.
The spin echo NMR spectra of 59Co in R2(Co1-xMnx)17, (R = Y, Gd) measured at 4.2 K are reported. The large shift of resonance lines is observed, that is explained as caused by reorientation of easy axis of magnetisation from easy plane to easy direction (c axis). It is suggested to explain quantitatively the spectra, that only two of four Co sites (9d and 18f) in R2Co17 structure play a dominant role in determining of anisotropy energy and the Co atoms at the 6c sites (“dumb-bell” atoms) give no direct contribution to the anisotropy energy of the compound. The corresponding changes of local anisotropy energy and the orbital part of cobalt magnetic moment characteristic for each of cobalt structural sites are calculated and discussed.  相似文献   

17.
18.
Zero-field nuclear magnetic resonance (NMR) of all NMR isotopes (175Lu, 55Mn, 73Ge, 69,71Ga) in LuMn6Ge6-xGax, 0 ≤ x ≤ 1, is used to monitor the variation of the hyperfine interaction with the sequence of antiferromagnetic - helimagnetic - ferromagnetic arrangement of the manganese moments of subsequent Kagomé net planes achieved by variation of the gallium content x. According to the 55Mn-NMR results, the local Mn moment varies by less than ±5% in this series. 175Lu-NMR proves canting of the antiferromagnetic sublattices in LuMn6Ge6. The anisotropy of the Ge magnetic hyperfine interaction decreases with increasing separation from the hexagonal Lu plane, whereas the absolute value of its isotropic part is only qualitatively correlated with the average separation of the six nearest Mn neighbours. Due to the anisotropic magnetic and electric hyperfine interaction at Ge and Ga sites, the non-collinear magnetic structures are clearly reflected by the NMR spectra, which are described quantitatively in this contribution. The preferred Mn moment direction rotates away from the c direction with x. The conduction or bonding electron spin polarization at the Ga nuclei is increased by 35–80% compared to the Ge nuclei. We argue that this is related with the variation of the magnetic order with the Ga content.  相似文献   

19.
Experimental evidence that nuclear magnetic resonance (NMR) can detect structural changes of piezoelectric La3Ga5SiO14 induced by dilute paramagnetic ions is presented. Gd3+ and Eu3+ cations have been incorporated into La3Ga5SiO14 monocrystals. As expected, the line-width of the tetrahedral 29Si magic angle spinning (MAS) NMR spectra as well as the inverse of the T2 relaxation time of 71Ga increases with the concentration of the paramagnetic ions. A surprising result is shown by 71Ga multiple quantum (MQ) MAS NMR spectrum, which changes with the concentration of paramagnetic ions. The changes in the 71Ga MQMAS spectra can be explained by a more ordonated distribution of Ga ions inside the oxygen tetrahedra. The 71Ga MQMAS NMR spectra allow identification of the one octahedral and two tetrahedral Ga sites.  相似文献   

20.
In order to investigate the electronic structure of the rapidly quenched Ni100-XPX metallic glass system (18 ≦ x ≦ 22), NMR and magnetic susceptibility measurements have been carried out for temperatures 4.2 °KT ≦ 295 °K and magnetic fields H ≦ 20 kOe. The 31P Knight shift and relaxation rate behavior demonstrate a metalloid concentration dependence which is consistent with earlier work on the ternary NiPdP and NiPtP metallic glass systems. A consideration of the trends in the magnetic susceptibility indicates that, relative to the Fermi energy, the d-states associated with Ni are higher (the number of d-holes are greater) than those for Pd or Pt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号