首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The 30° rotation domains in ZnO films were studied by transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The cross-section and plane-view observations reveal that the 30° rotation domains have elliptical cylindrical shape, with the longitude axis along one of the 1 1 2¯ 0 directions and the short axis along one of the 1¯ 1 0 0 orientations, respectively. The volume fraction of the 30° rotation domains is about 1%. Due to the elliptical shape of the domain boundaries along the [0 0 0 1]ZnO direction, partially disordered superlattice-like structures are formed. As shown by the HREM images and Zn elemental mapping, these super-lattices are most likely caused by periodical segregation and depletion of Zn along the domain boundary for compensating the mismatched lattice strain.  相似文献   

2.
Nucleation and growth of wurtzite AlN layers on nominal and off-axis Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy is reported. The nucleation and the growth dynamics have been studied in situ by reflection high-energy electron diffraction. For the films grown on the nominal Si(0 0 1) surface, cross-sectional transmission electron microscopy and X-ray diffraction investigations revealed a two-domain film structure (AlN1 and AlN2) with an epitaxial orientation relationship of [0 0 0 1]AlN || [0 0 1]Si and AlN1 || AlN2 || [1 1 0]Si. The epitaxial growth of single crystalline wurtzite AlN thin films has been achieved on off-axis Si(0 0 1) substrates with an epitaxial orientation relationship of [0 0 0 1]AlN parallel to the surface normal and 0 1 1 0AlN || [1 1 0]Si.  相似文献   

3.
Multi-domained heteroepitaxial rutile-phase TiO2 (1 0 0)-oriented films were grown on Si (1 0 0) substrates by using a 30-nm-thick BaF2 (1 1 1) buffer layer at the TiO2–Si interface. The 50 nm TiO2 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a titanium source, and the growth temperature was varied from 300 to 600 °C. At an optimal temperature of 500 °C, X-ray diffraction measurements show that rutile phase TiO2 films are produced. Pole figure analysis indicates that the TiO2 layer follows the symmetry of the BaF2 surface mesh, and consists of six (1 0 0)-oriented domains separated by 30° in-plane rotations about the TiO2 [1 0 0] axis. The in-plane alignment between the TiO2 and BaF2 films is oriented as [0 0 1] TiO2 || BaF2 or [0 0 1] TiO2 || BaF2 . Rocking curve and STM analyses suggest that the TiO2 films are more finely grained than the BaF2 film. STM imaging also reveals that the TiO2 surface has morphological features consistent with the BaF2 surface mesh symmetry. One of the optimally grown TiO2 (1 0 0) films was used to template a CrO2 (1 0 0) film which was grown via chemical vapor deposition. Point contact Andreev reflection measurements indicate that the CrO2 film was approximately 70% spin polarized.  相似文献   

4.
MgO films were grown on (0 0 1) yttria-stabilized zirconia (YSZ) substrates by molecular beam epitaxy (MBE). The crystalline structures of these films were investigated using X-ray diffraction and transmission electron microscopy. Growth temperature was varied from 350 to 550 °C, with crystalline quality being improved at higher temperatures. The MgO films had a domain structure: (1 1 1)[1 1 2¯]MgO(0 0 1)[1 0 0]YSZ with four twin variants related by a 90° in-plane rotation about the [1 1 1]MgO axis. The observed epitaxial orientation was compared to previous reports of films grown by pulsed laser deposition and sputtering and explained as resulting in the lowest interface energy.  相似文献   

5.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

6.
Pd thin films, grown on Si-rich 6H-SiC(0 0 0 1) substrates, were studied by atomic force microscopy, electron diffraction and high-resolution transmission electron microscopy. It is concluded that the growth is successful only when all the growth process takes place at room temperature. Under these conditions a very good epitaxial growth of Pd is achieved, despite the large misfit (about 8.6%) between Pd and the substrate and the existence of a semi-amorphous layer between the thin film and the substrate. A large number of twins appear in these films.  相似文献   

7.
Two-dimensional (2D) periodic arrays of Co metal and Co silicide nanodots were successfully fabricated on (0 0 1)Si substrate by using the polystyrene (PS) nanosphere lithography (NSL) technique and thermal annealing. The epitaxial CoSi2 was found to start growing in samples after annealing at 500 °C. The sizes of the Co silicide nanodots were observed to shrink with annealing temperature. From the analysis of the selected-area electron diffraction (SAED) patterns, the crystallographic relationship between the epitaxial CoSi2 nanodots and (0 0 1)Si substrates was identified to be [0 0 1]CoSi2//[0 0 1]Si and (2 0 0)CoSi2//(4 0 0)Si. By combining the planview and cross-sectional TEM examination, the epitaxial CoSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the shape of the faceted epitaxial CoSi2 nanodot was identified to be inverse pyramidal. The observed results present the exciting prospect that with appropriate controls, the PS NSL technique promises to offer an effective and economical patterning method for the growth of a variety of large-area periodic arrays of uniform metal and silicide nanostructures on different types of silicon substrates.  相似文献   

8.
A series of 100-oriented ScN films was grown under N-rich conditions on 100-oriented Si using different Sc fluxes. The ScN films grew in an epitaxial cube-on-cube orientation, with [0 0 1]ScN//[0 0 1]Si and [1 0 0]ScN//[1 0 0]Si, despite the high (11%) lattice mismatch between ScN and Si. The film grain size increases and the film ω-FWHM decreases with increasing Sc flux, but the film roughness increases. Films grown under similar conditions on 111-oriented Si resulted in mixed 111 and 100 orientations, indicating that the 100 orientation is favoured both due to texture inheritance from the substrate and due to the growth conditions used.  相似文献   

9.
A thin interlayer of Pt can greatly enhance the thermal stability of NiSi films formed by rapid thermal annealing (RTA) on Si(1 1 1) substrates, as was revealed by X-ray diffraction (XRD) data and sheet resistance measurement. High-resolution transmission electron microscopy (HRTEM) reveals a well-defined interface between the Ni(Pt)Si film and the Si(1 1 1) substrate for the Ni/Pt/Si sample annealed at 640°C. The orientation relationship in this sample determined by selected area electron diffraction (SAED) was NiSi(1 0 0)||Si(1 1 1) and NiSi[0   0]||Si[0 1  ]. With the increase of temperature, the texture of NiSi films transform from NiSi(1 0 0)||Si(1 1 1) to NiSi(0 0 1)||Si(1 1 1). The reduction in the interfacial energy due to the formation of the (1 0 0) textured NiSi film is proposed as a possible reason for the improved thermal stability of NiSi and the transition in NiSi texture during high-temperature annealing. Detailed study on the XRD data combined with Auger electron spectra (AES) indicates PtSi and NiSi form a solid solution following Vegard's law, which adjusts the lattice constant ratio c/b to and may account for the texture of NiSi(1 0 0)||Si(1 1 1).  相似文献   

10.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

11.
Thin films of CuGaxIn1-xSe2 (x=0.0-1.0) have been prepared by spray pyrolysis onto soda-lime glass substrates heated to a temperature of 325° C. The structure, crystal orientations, lattice parameters and grain size of the experimental films have been studied using the X-ray diffraction and scanning electron microscopy. All the deposited films were polycrystalline and showed single phase with an intense (112) orientation. The lattice parameters, a and c of the films vary linearly with the change of gallium composition. The grain size of the films decrease with the increase of gallium content.  相似文献   

12.
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.  相似文献   

13.
The influence of AlN nucleation layer (NL) growth conditions on the quality of GaN layer deposited on (0 0 0 1) sapphire by organometallic chemical vapor phase epitaxy (OMVPE) has been investigated by X-ray diffraction, atomic force microscopy and transmission electron microscopy. Growth pressure, temperature and time were varied in this study. Results indicate that there exists an optimal thickness of the NL is required for optimal growth. Both thin and thick NLs are not conducive to the growth of high-quality GaN layers. Arguments have been developed to rationalize these observations.  相似文献   

14.
Epitaxial MgO films were grown on Si(1 1 1) substrates at 800°C using methylmagnesium tert-butoxide (MeMgOtBu) as a single precursor under high-vacuum conditions (5×10−6 Torr). The crystalline structure, morphology, and chemical composition of the deposited films were investigated by X-ray diffraction, X-ray pole figure analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results show that epitaxial MgO films with correct stoichiometry can be deposited on Si(1 1 1) at 800°C. The single precursor methylmagnesium tert-butoxide has been found suitable for the epitaxial growth of MgO on Si(1 1 1) substrates.  相似文献   

15.
High-quality epitaxial YBa2Cu3O7−δ (YBCO) superconducting films with thicknesses between 0.2 and 2 μm were fabricated on (0 0 l) LaAlO3 with direct-current sputtering method. The influence of film thickness on the structure and texture was investigated by X-ray diffraction conventional θ–2θ scan and high-resolution reciprocal space mapping (HR-RSM). The films grew with strictly c-axis epitaxial, and no a-axis-oriented growth was observed up to a thickness of 2 μm. Lattice parameters of the YBCO films with different thicknesses were extracted from symmetry and asymmetry HR-RSMs. The X-ray lattice parameter method was used to determine the residual stress in YBCO films by measuring the a-, b-, c-axis strains, respectively. The results showed that YBCO films within thinner than 1 μm were under compressive stress, which was relieved increasing of film thickness. However, beyond 1 μm in thickness, YBCO films exhibited a tensile stress. Based on the experimental analysis, the variety of residual stresses in the films is mainly attributed to oxygen vacancies with thickness of YBCO film increasing.  相似文献   

16.
Hexagonal gallium nitride (h-GaN) films have been grown on AlAs nucleation layer by using radio frequency (RF) plasma source-assisted molecular beam epitaxy on GaAs (0 0 1) substrate. Transmission electron microscopy (TEM) techniques are used to characterize such h-GaN epilayers. TEM results show that (0 0 0 1) atom planes of h-GaN are parallel to (0 0 1) atom planes of the GaAs substrate. Defects, such as stacking faults and dislocations, have also been observed.  相似文献   

17.
Epitaxial NiO (1 1 1) and NiO (1 0 0) films have been grown by atomic layer deposition on both MgO (1 0 0) and α-Al2O3 (0 0 l) substrates at temperatures as low as 200 °C by using bis(2,2,6,6-tetramethyl-3,5-heptanedionato)Ni(II) and water as precursors. The films grown on the MgO (1 0 0) substrate show the expected cube on cube growth while the NiO (1 1 1) films grow with a twin rotated 180° on the α-Al2O3 (0 0 l) substrate surface. The films had columnar microstructures on both substrate types. The single grains were running throughout the whole film thickness and were significantly smaller in the direction parallel to the surface. Thin NiO (1 1 1) films can be grown with high crystal quality with a FWHM of 0.02–0.05° in the rocking curve measurements.  相似文献   

18.
《Journal of Crystal Growth》2003,247(3-4):261-268
GaN and AlN films were grown on (1 1 1) and (0 0 1) Si substrates by separate admittances of trimethylgallium (or trimethylaluminum) and ammonia (NH3) at 1000°C. A high temperature (HT) or low temperature (LT) grown AlN thin layer was employed as the buffer layer between HT GaN (or HT AlN) film and Si substrate. Experimental results show that HT AlN and HT GaN films grown on the HT AlN-coated Si substrates exhibit better crystalline quality than those deposited on the LT AlN-coated Si substrates. Transmission electron microscopy (TEM) of the HT GaN/HT AlN buffer layer/(1 1 1)Si samples shows a particular orientation relationship between the (0 0 0 1) planes of GaN film and the (1 1 1) planes of Si substrate. High quality HT GaN films were achieved on (1 1 1) Si substrates using a 200 Å thick HT AlN buffer layer. Room temperature photoluminescence spectra of the high quality HT GaN films show strong near band edge luminescence at 3.41 eV with an emission linewidth of ∼110 meV and weak yellow luminescence.  相似文献   

19.
Fabrication of Zn/ZnO nanocables by thermal oxidation of Zn nanowires grown by RF magnetron sputtering is reported. Single crystalline Zn nanowires could be grown by controlling supersaturation of source material through the adjustment of temperature and Zn RF power. X-ray diffraction and high-resolution transmission electron microscopy showed that surfaces of these Zn nanowires, grown along the [0 1 0] direction, gradually oxidized inward the Zn core to form coaxial Zn/ZnO nanocables in the subsequent oxidation at 200 °C. In the Zn/ZnO nanocable, epitaxial relations of [1 0 0]Zn//[1 0 0]ZnO, and (0 0 1)Zn//(0 0 1)ZnO existed at the interface between the Zn core and ZnO shell. A number of dislocations were also observed in the interface region of the Zn/ZnO nanocable, which are attributed to large differences in the lattice constants of Zn and ZnO. With further increasing the oxidation temperature over 400 °C, Zn nanowires were completely oxidized to form polycrystalline ZnO nanowires. The results in this study suggest that coaxial Zn/ZnO nanocable can be fabricated through controlled thermal oxidation of Zn nanowires, yielding various cross-sectional areal fractions of Zn core and ZnO shell.  相似文献   

20.
The mechanism of nitridation of (0 0 1) GaAs surface using RF-radical source was systematically studied with changing substrate temperature, nitridation time and supplying As molecular beam. It was found from atomic forth microscopy (AFM) measurements that supplying As is very important to suppress the re-evaporation of As atoms and to keep the surface smooth. Reflection high-energy electron diffraction (RHEED) measurements shows that surface lattice constant (SLC) of GaAs of 0.565 nm decreases with increasing the substrate temperature and that it finally relaxes to the value of c-GaN of 0.452 nm, at 570 °C in both [1 1 0] and [1¯ 1 0] directions without concerning with the supply of As molecular beam. But, in the medium temperature range (between 350 and 520 °C), SLC of [1 1 0] direction was smaller than that of [1¯ 1 0] direction. This suggests a relation between the surface structure and the relaxing mechanism of the lattice. The valence band discontinuity between the nitridated layer and the GaAs layer was estimated by using X-ray photoemission spectroscopy (XPS). It was between 1.7 and 2.0 eV, which coincides well with the reported value of c-GaN of 1.84 eV. This suggests that the fabricated GaN layer was in cubic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号