首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

2.
Reaction of a imidazole phenol ligand 4‐(imidazlo‐1‐yl)phenol (L) with 3d metal salts afforded four complexes, namely, [Ni(L)6] · (NO3)2 ( 1 ), [Cu(L)4(H2O)] · (NO3)2 · (H2O)5 ( 2 ), [Zn(L)4(H2O)] · (NO3)2 · (H2O) ( 3 ), and [Ag2(L)4] · SO4 ( 4 ). All complexes are composed of monomeric units with diverse coordination arrangements and corresponding anions. All the hydroxyl groups of monomeric cations are used as hydrogen‐bond donors to form O–H ··· O hydrogen bonds. However, the coordination habit of different metal ions produces various supramolecular structures. The NiII atom shows octahedral arrangement in 1 , featuring a 3D twofold inclined interpenetrated network through O–H ··· O hydrogen bond and π–π stacking interaction. The CuII atom of 2 displays square pyramidal environment. The O–H ··· O hydrogen bond from the [Cu(L)4(H2O)]2+ cation and lattice water molecule as well as π–π stacking produce one‐dimensional open channels. NO3 ions and lattice water molecules are located in the channels. 3 is a 3D supramolecular network, in which ZnII has a trigonal bipyramid arrangement. Two different rings intertwined with each other are observed. The AgI in 4 has linear and triangular coordination arrangements. The mononuclear units are assembled into a 1D chain by hydrogen bonding interaction from coordination units and SO42– anions.  相似文献   

3.
Micro-disks and micro-rods of ZnO were successfully synthesized by a mild solution process using zinc chloride as starting material. The morphology of the ZnO crystals changed substantially, depending on the concentrations of the Zn2+ ion and organic additives in the solution. A plate-like Zn5(OH)8Cl2·H2O precursor with a layered structure could be produced in solutions with high concentrations of chloride ions. The thermal stability, including phase composition and morphology, of the as-prepared Zn5(OH)8Cl2·H2O in air and water was investigated.  相似文献   

4.
Mesoporous ZnO nanosheets were successfully prepared by pyrolytic transformation of zinc carbonate hydroxide hydrate, Zn4CO3(OH)6·H2O. The nanosheets were initially formed as assemblies on glass substrates during chemical bath deposition (CBD) in aqueous solutions of urea and zinc acetate dihydrate, zinc chloride, zinc nitrate hexahydrate, or zinc sulfate heptahydrate at 80°C. It was key to induce heterogeneous nucleation of Zn4CO3(OH)6·H2O by promoting a gradual hydrolysis reaction of urea and controlling the degree of supersaturation of zinc hydroxide species. Morphology of Zn4CO3(OH)6·H2O was largely influenced by the anions present in the CBD solutions. The Zn4CO3(OH)6·H2O nanosheets were transformed into wurtzite ZnO by heating at 300°C in air without losing the microstructural feature.  相似文献   

5.
Mn(2,2′-bpy)2(HFGA) (1) and [Cu43-OH)22-OH)2(H2O)2(2,2′-bpy)4]?·?2HFGA?·?4H2O (2) (H2HFGA?=?hexafluoroglutaric acid and 2,2′-bpy?=?2,2′-bipyridine) have been synthesized and characterized by X-ray structural analyses. 1 is a monomer with six-coordinate Mn2+ from two oxygens of HFGA and four nitrogens of two 2,2′-bpy. Complex 2 is tetranuclear with four Cu2+ ions bridged by triple-bridging μ3-OH and double-bridging μ2-OH. There are two crystallographically independent Cu2+ ions in different five-coordinate environments. Cu1 is coordinated by 2,2′-bpy and three OH ligands. Cu2 is coordinated by 2,2′-bpy, two μ3-OH ligands, and one water molecule. The mononuclear and tetranuclear molecules as building blocks are connected to construct different 3-D supramolecular architectures via noncovalent interactions. Particularly, the lone pair (lp)–π (F···π) interaction in 1 is observed. A hybrid water-anionic tape by linkage of {[(H2O)4(HFGA)]2 4?} n fragments consisting of water dimers and HFGA anions in 2 is observed.  相似文献   

6.
Three polyoxometalate supramolecular assemblies based on rigid 2-(4-thiazolyl)benzimidazole (L) and two types of polytungstate anions, [CuII2Cl(L)4(PW12O40)]·3H2O (1), [CuII(L)2(H2O)]2[P2W18O62]·(HL)2·6H2O (2), and [ZnII(L)3]4[H(KPW12O40)3] (3), have been synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, and IR spectra. Compound 1 contains binuclear copper clusters {Cu2L4Cl}3+ with Cl as bridges. These binuclear clusters and [PW12O40]3– anions construct a supramolecular 2-D layer through hydrogen-bonding interactions. In 2, the [CuL2(H2O)]2+ subunits and Wells–Dawson anions build a 1-D supramolecular chain. In 3, the [PW12O40]3– anions are covalently linked by K+ to form an inorganic chain. These chains and discrete [ZnII(L)3]2+ subunits construct a 3-D supramolecular structure. The electrochemical and photocatalytic properties of 13 have been studied.  相似文献   

7.
A spectroscopic investigation of the products formed in the reaction of emeraldine base (EB-PANI) with copper(II) ions in dimethylacetamide (DMA) is presented. It is well known that metal cations can dope emeraldine base polyaniline (EB-PANI) through a pseudo-protonation reaction. Resonance Raman, UV–vis-NIR, and EPR data, obtained for Cu2+/EB-PANI solutions prepared using CuCl2·2 H2O, Cu(NO3)2· 3 H2O or Cu(CH3COO)2·H2O as Cu2+ sources, showed that the species formed in reactions of EB-PANI and Cu2+ ions are dependent on the anions of the copper salt employed. EPR spectra pointed out that the environments of Cu2+ ions with acetate, chloride or nitrate as anions in DMA solution are distinct. Resonance Raman and UV–vis-NIR data demonstrated that the main reactions are the oxidation of EB-PANI to pernigraniline base (PB-PANI) and doping of EB-PANI to ES-PANI (emeraldine salt) when a direct coordination of Cu2+ ions to PANI exists. With nitrate as very weak coordinating anion, ES-PANI is formed preferentially. When copper chloride is used, both oxidation and doping of EB-PANI are verified. Conversely with acetate, the dimeric cage structure of this copper salt is preserved in solution, and oxidation of EB-PANI to PB-PANI is the only observed reaction. These results demonstrate the possibility of modulating the products of reaction between Cu2+ ions and EB-PANI in DMA solution by changing the counter ion of the Cu2+ source.  相似文献   

8.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

9.
Two novel coordination polymers [Mn3(EPDA)2(H2O)8 · (ENA) · (ClO4) · 0.5(HClO4) · (CH3OH) · 2(H2O)]n ( 1 ) and[Zn(EPDA)(H2O)]n ( 2 ) (EPDA = 5‐ethylpyridine‐2, 3‐dicarboxylic acid, ENA = 5‐ethylnicotinate acid) were synthesized and characterized by IR and UV/Vis spectroscopy, elemental analysis, PXRD, TGA, photoluminescence, and single‐crystal X‐ray diffraction. Organic EPDA2– and ENA anions, the decomposition products of ENA‐Pmmi by removing the –Pmmi group under in situ solvothermal conditions, were obtained by performing the reactions of ENA‐Pmmi with MnII or ZnII perchlorate. In complex 1 , the MnII ions were bridged by μ4‐EPDA2– anions to give a 2D positively charged layer, and the free ENA anion and solvent molecules are filled into the gap between the layers through hydrogen bonding interactions to form a sandwich structure. In compound 2 , the μ3‐EPDA2– anions bridge divalent Zn2+ ions to form a 1D chain, and the ENA anions are not involved in stacking interactions but left in the residual solution. In addition, the ENA‐Imoi instead of ENA‐Pmmi, was selected to further investigate this reaction (ENA‐Pmmi and ENA‐Imoi are imazethapyr homologues), and the same experimental results could be obtained.  相似文献   

10.
The triply bridged title dinuclear copper(II) compound, [Cu2(C2H3O2)(OH)(C12H8N2)2(H2O)](NO3)2·H2O, (I), consists of a [Cu22‐CH3COO)(μ2‐OH)(phen)22‐OH2)]2+ cation (phen is 1,10‐phenanthroline), two uncoordinated nitrate anions and one water molecule. The title cation contains a distorted square‐pyramidal arrangement around each metal centre with a CuN2O3 chromophore. In the dinuclear unit, both CuII ions are linked through a hydroxide bridge and a triatomic bridging carboxylate group, and at the axial positions through a water molecule. The phenanthroline groups in neighbouring dinuclear units interdigitate along the [010] direction, generating several π–π contacts which give rise to planar arrays parallel to (001). These are in turn connected by hydrogen bonds involving the aqua and hydroxide groups as donors with the nitrate anions as acceptors. Comparisons are made with isostructural compounds having similar cationic units but different counter‐ions; the role of hydrogen bonding in the overall three‐dimensional structure and its ultimate effect on the cell dimensions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号