首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The 1L0-phonon replica of the I2 bound exciton in ZnTe at 2.374 eV is fully resolved into a quintet at fields of 130 kG. Analysis of the data shows that the I2 complex consists of an exciton bound to an ionized donor or acceptor; the electron and hole gyromagnetic ratios deduced, gh = ? 1.2 and ge = ± 1.7, are in excellent agreement with the values determined from recent spin-flip scattering experiments, viz. gh = 1.07 ± 0.1, ge = 1.74 ± 0.05.  相似文献   

2.
Comparative measurements have been made of optical absorption and photoluminescence of refined undoped and Cu in-diffused ZnTe single crystals. Strong increases in a bound exciton BE line near 2.375 eV previously identified with the electrically dominant point defect acceptor ‘a’, with binding energy EA ? 149 meV, suggests that this acceptor is substitutional CuZn. Similarly strong increases in a relatively broad band at slightly higher energy suggests the simultaneous incorporation of shallow donors, possibly interstital CuI. These findings indicate that intrinsic defects such as VZn neither control the Fermi level in refined ZnTe nor produce shallow acceptors with EA ? 250 meV, contrary to much previous speculation.  相似文献   

3.
Uniaxial stress experiments were used to investigate the nature of the luminescence lines observed at low temperatures in ZnTe in the vicinity of the absorption edge. The single crystals used in this experiment were grown from solution of ZnTe in tellurium. Both “as-grown” crystals and crystals annealed in Zn vapour were investigated. The most intense line in “as-grown” crystals is attributed to an exciton bound to a neutral acceptor. The binding energy of the exciton in this center is 6 meV. After annealing a new center appears in the same spectral region. Stress experiments as well as the temperature dependence of the intensity of the luminescence indicate that this center is a complex consisting of an exciton and an ionized donor. Splitting of J = 1 (Γ5) and J = 2 (Γ3 + Γ4) levels was found to be 1.2 meV.  相似文献   

4.
We report very sharp bound exciton luminescence spectra in high quality melt-grown very lightly compensated ZnTe, p-type with NA-ND in the low 10+15 cm-3. Bound exciton localisation energies at seven shallow neutral acceptors with EA between ~55 and ~150 meV are very insensitive to EA. Optical absorption and dye laser luminescence excitation spectroscopy were necessary to obtain a full separation of the transitions due to different acceptors, together with a study of certain ‘two-hole’ luminescence satellites in which the acceptor is left in a series of orbital states after bound exciton decay. Two shallow acceptors are PTe and AsTe, a third possibly LiZn while a fourth, relatively prominent in our best undoped crystals, may be a complex. A deeper, 150 meV acceptor, frequently reported in the ZnTe literature and electrically dominant in most of our undoped crystals has the Zeeman character of a point defect. We present clear evidence from our spectra that this energy does not represent the binding of a single hole at a doubly ionized cation vacancy, a popular attribution since 1963. This acceptor may be covered by another impurity, possibly CuZn. We also report bound phonon effects, lifetime broadening of excited bound exciton states and observe a single unidentified donor with ED ~18.5 meV. This energy is determined using selective dye laser excitation at the weak neutral donor bound exciton line and from the onset of valence band to ionized donor photo-absorption.  相似文献   

5.
We investigate the optical properties of the hybrid crystal ZnTe(C2H8N2)0.5 from first principles. The excitonic effect is included by solving the Bethe–Salpeter equation for the two-particle Green's function. The inorganic ZnTe acts as optical active layer and the excitonic wave function is confined within it by C2H8N2 layers. Due to the confinement of electronic states, electron–hole interaction within ZnTe layers is enhanced and the absorption spectra are thus changed drastically. The exciton binding energies are 0.54 and 0.42 eV for α and β structures, respectively. The calculated quasiparticle gap of the β structure is 3.68 eV.  相似文献   

6.
The bound exciton lines I5, I6, and I78 in ZnO at 5 K are studied in the energetic region of the free excitons and below by means of excitation spectroscopy. Apart from the maxima at the free exciton energies, additional resonances are observed and interpreted as the direct creation of bound excitons in excited states which lie 6meV and 4.5 meV above the ground states.  相似文献   

7.
Photoexcitation spectroscopy has been used to study the excited states of the neutral c-acceptor bound exciton complex Ac1 in ZnTe. We have detected four excited states at ~ 11.2 meV above the bound exciton ground state. Zeeman effects on these excited states have also been studied. The results show that they correspond to excitations of the bound electron to donor-like 2p and 2s orbital states. This represents an unambiguous experimental evidence of the pseudo-donor model previously suggested by Rühle and Bimberg for acceptor bound exciton complexes when me ? mh.  相似文献   

8.
The absorption spectra of thin films of (MI)1 ? y (Ag1 ? x CuxI)y solid solutions (M = Rb, Cs) with the initial molar concentration y = 0.33 have been investigated. It is established that, at low concentrations x, a local exciton band due to Cu+ ions is split off from the main long-wavelength exciton bands. In Rb2Ag1 ? x CuxI3 solutions, the concentration shift of exciton bands indicates the formation of a persistent-type exciton spectrum. However, in Rb2Ag1 ? x CuxI3 with x ≥ 0.5 and in Cs2Ag1 ? x CuxI3 with x > 0.2, exciton spectra of amalgamation type are observed, which are related to the formation of more stable M 3Ag2 ? 2x Cu2x I5 solid solutions. The formation of these solutions leads to broadening of the exciton bands and to the concentration transition from persistent-to amalgamation-type exciton spectra.  相似文献   

9.
Zeeman effects have been measured for the Ac1 line at 2.368 eV in ZnTe. The results are interpreted in terms of exciton recombination at a neutral acceptor center in a strong trigonal crystal field. The relevant g-factors are : ge = -0.50 ± 0.05 for the electron ; gh = +0.90 ± 0.05 for the hole.  相似文献   

10.
Samples of ZnTe showing near gap edge luminescence predominantly due to exciton recombination at shallow neutral acceptors and donor- acceptor pair recombination have been investigated using optically detected magnetic resonance (ODMR). Emission polarization changes at 2.318 eV were observed due to magnetic resonance of electrons at ge = + 0.401 ± 0.004. The observations are consistent with the donor trapped electron resonance resulting from microwave induced changes in donor-acceptor pair photoluminescence.  相似文献   

11.
用共蒸发法沉积了ZnTe/ZnTe:Cu复合多晶薄膜,通过XRD,XPS,C-V,I-V等研究了沉积温度对薄膜结构、Cu浓度分布及电池性能的影响.结果表明,沉积温度对薄膜的结构影响不明显,薄膜呈立方相,经185 ℃退火后出现了六方相.对薄膜的剖析发现,Cu浓度分布呈现先上升到一极大值而后快速下降的趋势, 100 ℃沉积的ZnTe/ZnTe:Cu薄膜,ZnTe层起到了阻止Cu扩散作用,用这种薄膜制作的太阳电池XD较大 关键词: ZnTe多晶薄膜 沉积温度 薄膜结构 器件性能  相似文献   

12.
{111} ZnTe crystals with various densities of twin boundaries in the growth direction were produced at ~670°C by the chemical vapor deposition method with the vapor environment offset toward an excess of Zn. Defects are formed in conical crystallites (up to 5 mm in height and with lateral dimensions of 10–500 μm at the bottom and up to 2 mm at the top) due to instabilities in the crystallization front, which arise because of convection-type heat and mass exchange in the oversaturated vapor medium. The influence of twin boundaries on the distribution of chemical impurities and the electronic spectrum of ZnTe was studied using x-ray diffractometry, scanning electron microscopy, and low-temperature photoluminescence (PL). It is found that rapid low-temperature growth of [111] ZnTe polycrystals from the vapor phase with an excessive Zn content favors the intensive formation of rotation and reflection twins. The incoherent [111] boundary of reflection twins is conductive to the separation and accumulation of impurities. In the regions of a crystal with a high density of reflection twins, exciton-impurity complexes (I C , I X ) and a Y strip, which is usually related to extended defects (dislocations, twins, crystallite boundaries), are found in the low-temperature PL spectra. Additional studies show that I X is related to excitons trapped by neutral isoelectronic or charged defects and that I C is probably due to an impurity of group IV of the Periodic Table.  相似文献   

13.
The site-selective and time-resolved fluorescence laser spectroscopy and kinetic measurements with high spectral and nanosecond temporal resolution was applied to analyze the high-energy wing of the M and N absorption bands of the 4I9/2(1)→4G5/2(1) crystal-field (CF) transition in a CaF2:Nd3+ (0.6 wt%) crystal at 4.2 K. It was found that at helium temperatures the dynamically split spectral line assigned as the 4I9/2(1)→4G5/2(1) (CF) transition of coherently coupled Nd3+ ions in the pair M- and quartet N-centers of CaF2:Nd3+ (0.6 wt%) is inhomogeneously broadened. It consists of the pair M- and quartet N-centers with at least 0.1 A variation of the positions of the fluorescence-excitation spectral lines registered at the 4F3/2(1)→4I9/2(1) CF transition. Small fluorescence-lifetimes variation of the 4F3/2 and 4D3/2 levels from the small variation of the distances R between Nd3+ ions in the pair is found. At least 2.7% variation of the value of the Nd-Nd distance R in the pair M-center was determined from the lifetime variation of the 4F3/2 manifold with the assumption of a dipole-dipole interaction between the ions in the pair.The energy transfer up-conversion process responsible for the UV fluorescence observed when pumping the 4I9/2(1)→4G5/2(1) transition has been determined.  相似文献   

14.
From an invariant expansion, we construct the exciton Hamiltonian for the Γ6×Γ8 excitons in theT d -type material ZnTe represented by an 8×8 matrix including the influences of a finite wave vector and an external magnetic field. We diagonalize the Hamiltonian matrix to obtain the exciton states. Then the excitons are coupled to the electromagnetic radiation field thus giving the polariton states. The theoretical dispersion curves are fitted to the results of two-photon Raman scattering and reflection experiments in magnetic fields up to 22 T. From this fit we deduce precise values for the eigenergies, exciton masses,g-factors, and diamagnetic shifts.  相似文献   

15.
A method is described by which the phase of reflectivity for cubic crystals is measured. It involves modulated piezo-reflectance at the frequency ω1 and modulation of the polarization of light with a 12λ-plate rotating with the frequency ω2. The signal of frequency 2ω2 yields the phase, and the signals of frequencies (ω1± 2ω2) yield the derivative of the phase. We have applied this method to measure the exciton spectra of ZnTe. It turns out that the phase becomes negative in certain spectral regions. This behaviour is interpreted in terms of Hopfield and Thomas' model of exciton free surface layers.  相似文献   

16.
Wavelength-modulation spectroscopy is used to obtain the temperature dependence of the near band gap reflectivity spectrum Eo of MgxZn1?xTe ternary semiconducting alloys. Results are given in the range 80–100 K for the cubic materials: 0〈x〈0.5. The analysis of the line shapes as a function of x and T confirms the hypothesis of an exciton bound to the complex defect associated with zinc vacancy, as ZnTe. The Eo(x) curve is parabolic. The bowing parameter is C=0.45 ± 0.1 eV at 80 K, C=0.6 ± 0.1 eV at 300 K. Within experimental scattering the temperature coefficient dE0dT is nearly constant with x:-4.5±0.3 × 10?4eVK?1. This data is smaller than the value calculated in the literature for ZnTe from pseudo potential method.  相似文献   

17.
A study is reported of the reflectance and low-temperature photoluminescence (PL) spectra of ZnTe films grown by molecular-beam epitaxy (MBE) on GaAs substrates [(100) orientation, 3° deflection toward 〈110〉]. It is shown that the strain-induced splitting of the free-exciton energy level (ΔE ex) does not depend on ZnTe film thickness within the 1–5.7 μm range and is due to biaxial in-plane film tension. The stresses are primarily determined by the difference between the thermal expansion coefficients of the film and the substrate. It is also shown that the residual stresses originating from incomplete relaxation of the film lattice parameter to its equilibrium value at the growth temperature likewise provide a certain contribution. The position of the spectral line of an exciton bound to a neutral acceptor (As) is well approximated in terms of the present models, taking into account the stresses calculated using the value of ΔE ex.  相似文献   

18.
The magnetic field dependence of the exciton emission intensity Iex(H) has been investigated in Ge crystals stressed along the direction near 〈100〉. In the low field limit the magnetic field correction has been evaluated to the wave functions of the ground and some excited states of an isotropic exciton. The calculated dependence Iex(H) in the case of Ge is in a good agreement with the experimental one at H ? 0.5 T.  相似文献   

19.
We report resonant Brillouin scattering results in CdSe. Enhancements in Brillouin scattering have been observed at both the I2 bound exciton and the free exciton. As a result of the spatial dispersion of the exciton-polariton, the Brillouin frequencies vary with the polariton energy. From this variation of the Brillouin frequencies, we deduced the following parameters in CdSe: transverse exciton frequency =14713 cm?1, splitting between longitudinal and transverse exciton frequencies = 4cm?1 and exciton effective mass (perpendicular to the c-axis) =0.40 times free electron mass. The Brillouin linewidths were found to vary with polariton energies in qualitative agreement with the theory of Brenig, Zeyher and Birman.  相似文献   

20.
A study has been carried out of the temperature dependences of luminescence spectra on a large number of CdTe/ZnTe structures differing in average thickness, 〈L z〉=0.25–4 monolayers (ML), and CdTe layer geometry (continuous, island type). The influence of geometric features in the structure of ultrathin layers on linewidth, the extent of lateral localization of excitons, their binding energy, and exciton-phonon coupling is discussed. It is shown that in island structures there is practically no lateral exciton migration. The exciton-phonon coupling constant in a submonolayer structure has been determined, Γph=53 meV, and it is shown that in structures with larger average thicknesses Γph is considerably smaller. Substantial lateral exciton migration was observed to occur in a quantum well with 〈L z〉=4 ML, and interaction with acoustic phonons was found to play a noticeable part in transport processes. It has been established that the depth of the exciton level in a quantum well and structural features of an ultrathin layer significantly affect the temperature dependences of integrated photoluminescence intensity. Fiz. Tverd. Tela (St. Petersburg) 41, 717–724 (April 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号