首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Nuclear Physics A》1986,460(3):395-436
Predictions for 2v and 0v double beta decay rates are given for all nuclei with A ⩾ 70, for which double beta decay is energetically allowed. These predictions are based on detailed nuclear structure studies of the beta strength distribution and replace earlier estimates basing mostly on phase space considerations. New and more stringent limits on the Majorana neutrino mass are deduced from existing double beta decay experiments. Since the collective effects arising from spin-isospin as well as quadrupole-quadrupole forces are found to lead to a strong reduction of the nuclear matrix elements for two-neutrino double beta decay, but to have only minor influence on the matrix elements M0v for the neutrinoless decay mode, the smaller limits for mv result mainly from the fact that the widely used scaling procedure underestimates the 0v matrix elements. It is further discussed to what extent interference between different neutrinos affects the obtained mass limits.  相似文献   

2.
We construct a model where neutrino Majorana masses are small and hierarchical but where neutrinoless double beta decay occurs at an observable rate potentially detectable by present day experiments.  相似文献   

3.
Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of mν < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments.  相似文献   

4.
5.
The European Physical Journal C - We present the EpIC Monte Carlo event generator for exclusive processes based on generalised parton distributions. EpIC utilises the PARTONS framework, which...  相似文献   

6.
We have calculated the neutrinoless double beta decay rate of 76Ge. We take into account for the first time a relativistic correction to the nuclear current including weak magnetism. Its effect is to cancel a considerable part of the decay amplitude and we obtain less stringent upper limits on the neutrino Majorana mass and the right-handed weak leptonic current compared with previous calculations.  相似文献   

7.
We suggest a new setup where SUSY breaking spurion F-term possesses lepton number. This setup not only modifies sparticle mass spectra but also realizes several new models, where neutrino mass is naturally induced through radiative corrections. We here suggest two new models; the first one is (i): pseudo-Dirac/Schizophrenic neutrino model, and the second one is (ii): pure Majorana neutrino model. We will also show this setup can naturally apply to the supersymmetric Zee-Babu model.  相似文献   

8.
The probability distribution for the effective Majorana mass as a function of the lightest neutrino mass in the standard three neutrino scheme is computed via a random sampling from the distributions of the involved mixing angles and squared mass differences. A flat distribution in the \([0,2\pi ]\) range for the Majorana phases is assumed, and the dependence of small values of the effective mass on the Majorana phases is highlighted. The study is then extended with the addition of the cosmological bound on the sum of the neutrino masses. Finally, the prospects for \(0\nu \beta \beta \) decay search with \(^{76}\)Ge, \(^{130}\)Te and \(^{136}\)Xe are discussed, as well as those for the measurement of the electron neutrino mass.  相似文献   

9.
Recent achievements in the study of double-beta (ββ) decay are presented. We discuss the potential of this process to search, beyond Standard Model physics, for the QRPA-based methods used for the calculation of the relevant nuclear matrix elements and the derivation of the neutrino mass from both ββ-decay calculations and neutrino oscillation and cosmological data. The key position of the ββ-decay experiments in resolving the neutrino absolute mass is highlighted.  相似文献   

10.
There are three observables related to neutrino mass, namely the kinematic mass in direct searches, the effective mass in neutrino-less double beta decay, and the sum of neutrino masses in cosmology. In the limit of exactly degenerate neutrinos there are very simple relations between those observables, and we calculate corrections due to non-zero mass splitting. We discuss how the possible non-unitarity of the lepton mixing matrix may modify these relations and find in particular that corrections due to non-unitarity can exceed the corrections due to mass splitting. We furthermore investigate constraints from neutrino-less double beta decay on mass and mixing parameters of heavy neutrinos in the type I see-saw mechanism. There are constraints from assuming that heavy neutrinos are exchanged, and constraints from assuming light neutrino exchange, which arise from an exact see-saw relation. The latter has its origin in the unitarity violation arising in see-saw scenarios. We illustrate that the limits from the latter approach are much stronger. The drastic impact of the new limit on inverse neutrino-less double beta decay (ee→WW)(eeWW) is studied. We furthermore discuss neutrino mixing in case there is one or more light sterile neutrinos. Neutrino oscillation probabilities for long baseline neutrino oscillation experiments are considered, and the analogy to general non-unitarity phenomenology, such as zero-distance effects, is pointed out.  相似文献   

11.
12.
13.
14.
15.
We point out that extensions of the standard model with low scale (approximately TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with grand unified theory scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of mu-->egamma and mu-->e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.  相似文献   

16.
17.
GRAHAM G ROSS 《Pramana》2012,79(4):793-808
We consider lepton flavour violation (LFV) in the charged lepton sector both from the bottom-up effective Lagrangian approach and from the top-down approach via various case studies that have been analysed. The implications for LFV studies at the LHC is briefly discussed. Finally the nature of LFV in the neutrino sector is considered, paying particular regard to the implications of the recent measurements of ?? 13.  相似文献   

18.
19.
Single β-decay of 187Re and double β-decay are discussed for probing absolute masses of neutrinos. It is shown that 187Re decay is dominated by p-wave emission of the electron over s-wave. Double β-decay nuclear matrix elements relevant to the neutrino mass mechanism are discussed in the view point of nuclear structure and the underlying NN interaction.  相似文献   

20.
This paper reports on the improved Mainz experiment on tritium spectroscopy which yields a 10 times higher signal to background ratio than before. The main experimental effects and systematic uncertainties have been investigated in side experiments, and possible error sources have been eliminated. Extensive data taking took place in the years 1997 to 2001. A residual analysis of the data sets yields for the square of the electron antineutrino mass the final result of eV2/c4. We derive an upper limit of eV/c2 at 95% confidence level for the mass itself.Received: 21 December 2004, Published online: 9 March 2005PACS: 1460.Pq, 23.40.-s, 2930.Dn, 2930.AjCh. Kraus: Present address: Department of physics, Queens university, K7L3N6 Kingston, CanadaB. Bornschein: Present address: Forschungszentrum Karlsruhe, Tritiumlabor, 76344 Eggenstein-Leopoldshafen, GermanyL. Bornschein: Present address: Universität Karlsruhe (TH), Institut für exp. Kernphysik, Postfach 6980, 76128 Karlsruhe, GermanyA. Kovalik: On leave from the Nuclear Physics Institute of the Acad. Sci. Czech Republic, 25068 Rez near PragueB. Ostrick: Present address: Helmholtz-Institut für Strahlen und Kernphysik, Universität Bonn, 53115 Bonn, Germany Corresponding author: E.W. OttenCh. Weinheimer: Present address: Institut für Kernphysik, Universität Münster, 48149 Münster, GermanyThis paper comprises principal parts of the PhD theses of Christine Kraus, Beate Bornschein and Lutz Bornschein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号