首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of In2Zn(SeO3)4 (I) and Ga2Zn(TeO3)4 (II) are prepared by solid state reaction of ZnO, In2O3 or Ga2O3, and SeO2 or TeO2 (silica tubes, 600—700 °C, 48 h).  相似文献   

2.
The reaction of elemental gold and selenic acid in Teflon-lined steel autoclaves leads to orange-yellow single crystals of Au2(SeO3)2(SeO4) (orthorhombic, Z = 4, Cmc2(1) (No. 36), a = 1689.1(3) pm, b = 630.13(8) pm, c = 832.7(1) pm, V = 886.2(2) angstroms3, Rall = 0.0452). In the crystal structure, Au3+ is surrounded by four oxygen atoms of just as many monodentate SeO3(2-) ions in a square planar manner. The linkage of the polyhedra leads to double chains in the [001] direction which are connected to puckered layers by SeO4(2-) groups. The noncentrosymmetric space group could be proved by the observation of an SHG effect upon irridation at 1064 nm that shows an efficiency of about 43% compared to a KDP reference. Upon heating, Au2(SeO3)2(SeO4) decomposes at about 370 degrees C in one step yielding elemental gold. The presence of selenite and selenate groups in the compounds is also obvious from the IR and Raman spectra which show the characteristic bands of both species. Furthermore, solid-state NMR spectra reveal the different surroundings of the selenium atoms in the compound.  相似文献   

3.
Two new noncentrosymmetric (NCS) polar oxide materials, Zn(2)(MoO(4))(AO(3)) (A = Se(4+) or Te(4+)), have been synthesized by hydrothermal and solid-state techniques. Their crystal structures have been determined, and characterization of their functional properties (second-harmonic generation, piezoelectricity, and polarization) has been performed. The isostructural materials exhibit a three-dimensional network consisting of ZnO(4), ZnO(6), MoO(4), and AO(3) polyhedra that share edges and corners. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate the materials exhibit moderate SHG efficiencies of 100 × and 80 × α-SiO(2) for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Particle size vs SHG efficiency measurements indicate the materials are type 1 non-phase-matchable. Converse piezoelectric measurements resulted in d(33) values of ~14 and ~30 pm/V for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively, whereas pyroelectric measurements revealed coefficients of -0.31 and -0.64 μC/m(2) K at 55 °C for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Frequency-dependent polarization measurements confirmed that all of the materials are nonferroelectric; that is, the macroscopic polarization is not reversible, or "switchable". Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were also performed. First-principles density functional theory (DFT) electronic structure calculations were also done. Crystal data: Zn(2)(MoO(4))(SeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.1809(4) ?, b = 8.3238(7) ?, c = 7.1541(6) ?, β = 99.413(1)°, V = 305.2(1) ?(3), Z = 2; Zn(2)(MoO(4))(TeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.178(4) ?, b = 8.409(6) ?, c = 7.241(5) ?, β = 99.351(8)°, V = 311.1(4) ?(3), Z = 2.  相似文献   

4.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

5.
Oh SJ  Lee DW  Ok KM 《Inorganic chemistry》2012,51(9):5393-5399
Two new quaternary mixed-metal selenites, SrMo(2)O(5)(SeO(3))(2) and PbMo(2)O(5)(SeO(3))(2), have been synthesized as crystals and pure polycrystalline phases by standard solid-state reactions using SrMoO(4), PbO, MoO(3), and SeO(2) as reagents. The crystal structures of the reported materials have been determined by single-crystal X-ray diffraction. SrMo(2)O(5)(SeO(3))(2) and PbMo(2)O(5)(SeO(3))(2) are isostructural and crystallized in the triclinic centrosymmetric space group P1? (No. 2). The reported materials exhibit chain structures consisting of MoO(6) octahedra and asymmetric SeO(3) polyhedra. Complete characterizations including IR spectroscopy and thermal analyses for the compounds are also presented, as are dipole moment calculations. In addition, the powder second-harmonic-generating (SHG) properties of noncentrosymmetric polar BaMo(2)O(5)(SeO(3))(2) have been measured using 1064 nm radiation. Through powder SHG measurement, we are able to determine that BaMo(2)O(5)(SeO(3))(2) has a SHG efficiency of approximately 80 times that of α-SiO(2). Additional SHG measurements reveal that the material is phase-matchable (type 1). A detailed cation size effect on the symmetry and framework structure is discussed.  相似文献   

6.
Summary Single crystal X-ray data of the hydrothermally grown new phase Li2Cu3(SeO3)2(SeO4)2 were measured with a four-circle diffractometer up to sin /=0.81 Å–1 [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, = 94.21(1)°]. The structure was determined by direct and Fourier methods and refined toR=0.034,R w =0.027 for 2 086 independent reflections.Cu(1)[4+1]O5 forms a tetragonal pyramid, Cu(2)[4 + 2]O6 is a strongly elongated octahedron. The Li atom is surrounded by four O atoms forming a distorted tetrahedron. Se(IV)O3 and Se(VI)O4 groups are in accordance to literature, mean Se-O bond lengths are 1.714 and 1.644 Å.
Die Kristallstruktur von Li2Cu3(SeO3)2(SeO4)2
Zusammenfassung Einkristall-Röntgendaten der hydrothermal gezüchteten neuen Phase Li2Cu3(SeO3)2(SeO4)2 wurden mit einem Vierkreisdiffraktometer im Bereich bis zu sin /=0.81 Å–1 gemessen [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, =94.21(1)°]. Die Kristallstruktur wurde mittels direkter und Fourier-Methoden bestimmt und für 2 086 unabhängige Reflexe zuR=0.034,R w =0.027 verfeinert.Cu(1)[4+1]O5 bildet eine tetragonale Pyramide, Cu(2)[4+2]O6 ist ein stark verlängertes Oktaeder. Das Li-Atom ist von vier O-Atomen in Gestalt eines verzerrten Tetraeders umgeben. Die Se(IV)O3-und Se(VI)O4-Gruppen entsprechen der Literatur, die mittleren Se-O-Abstände betragen 1.714 und 1.644 Å.
  相似文献   

7.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

8.
Ag2Hg2(TeO4)3     
Red single crystals of disilver(I) dimercury(II) tris­[tetra­oxo­tellurate(VI)], Ag2Hg2(TeO4)3, were obtained under hydro­thermal conditions at 523 K. The structure is built up of 1[(TeO2/1O4/2)({TeO2/1O2/2}2O4/2)] chains, with an overall composition [TeO4]2−, that run parallel to the crystallographic a axis. Distorted AgO6 and HgO6 polyhedra (the latter with two short and nearly collinear Hg—O bonds) link the tellurate chains into a three‐dimensional network. Except for one Te atom situated on an inversion center, all atoms occupy general positions.  相似文献   

9.
The structures of tripotassium digallium tris(phosphate), K3Ga2(PO4)3, and trisodium gallium bis(phosphate), Na3Ga(PO4)2, have different irregular one‐dimensional alkali ion‐containing channels along the a axis of the orthorhombic and triclinic unit cells, respectively. The anionic subsystems consist of vortex‐linked PO4 tetrahedra and GaO4 tetrahedra or GaO5 trigonal bipyramids in the first and second structure, respectively.  相似文献   

10.
The experimental results obtained for the specific molar heat capacity of the tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3 are processed by the least squares method. The temperature dependence of the specific molar heat capacity derived is used to determine the thermodynamic properties: entropy ( \UpdeltaTT Sm0 ), \left( {\Updelta_{T\prime }^{T} S_{m}^{0} } \right), enthalpy ( \UpdeltaTT Hm0 ) \left( {\Updelta_{T\prime }^{T} H_{m}^{0} } \right) and Gibbs function ( \UpdeltaTT Gm0 ) \left( {\Updelta_{T\prime }^{T} G_{m}^{0} } \right) of the tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3.  相似文献   

11.
12.
Pr4(SeO3)2(SeO4)F6 and NaSm(SeO3)(SeO4): Selenite‐Selenates of Rare Earth Elements Light green single crystals of Pr4(SeO3)2(SeO4)F6 have been obtained from the decomposition of Pr2(SeO4)3 in the presence of LiF in a gold ampoule. The monoclinic compound (C2/c, Z = 4, a = 2230.5(3), b = 710.54(9), c = 835.6(1) pm, β = 98.05(2)°, Rall = 0.0341) contains two crystallographically different Pr3+ ions. Pr(1)3+ is attached by six fluoride ions and two chelating SeO32– groups (CN = 10), Pr(2)3+ is surrounded by four fluoride ions, three monodentate SeO32– and two SeO42– groups. One of the latter acts as a chelating ligand, so the CN of Pr(2)3+ is 10. The selenite ions are themselves coordinated by five and the selenate ions by four Pr3+ ions. The coordination number of the F ions is three and four, respectively. The linkage of the coordination polyhedra leads to cavities in the crystal structure which incorporate the lone pairs of the selenite ions. The reaction of Sm2(SeO4)3 and NaCl in gold ampoules yielded light yellow single crystals of NaSm(SeO3)(SeO4). The monoclinic compound (P21/c, Z = 4, a = 1066.9(2), b = 691.66(8), c = 825.88(9) pm, β = 91.00(2)°, Rall = 0.0530) contains tenfold oxygen coordinated Sm3+ ions. The oxygen atoms belong to five SeO32– and two SeO42– ions. Two of the SeO32– groups as well as one of the SeO42– groups act as a chelating ligand. The sodium ions are surrounded by five SeO42– ions and one SeO32– group. One of the selenate ions is attached chelating leading to a coordination number of seven. Each selenite group is coordinated by six (5 × Sm3+ and 1 × Na+), each selenate ion by seven cations (5 × Na+ and 2 × Sm3+).  相似文献   

13.
Single crystals of dizinc tellurium dichloride trioxide, Zn2(TeO3)Cl2, were synthesized via a transport reaction in sealed evacuated glass tubes. The compound has a layered structure in which the building units are [ZnO4Cl] square pyramids, distorted [ZnO2Cl2] tetrahedra and [TeO3E] tetrahedra (E is the 5s2 lone pair of the TeIV atom), joined through shared edges and corners to form charge‐neutral layers. Cl atoms and Te‐atom lone pairs protrude from the surfaces of each layer towards adjacent layers, and the layers are held together by dispersion forces only. The compound is isostructural with the synthetic compound CuZn(TeO3)Cl2 and the mineral sophiite, Zn2(SeO3)Cl2.  相似文献   

14.
Vibrational spectra of M4LiH3(XO4)4 family, where M=K, Rb, X=S, Se together with Na5H3(SeO4)4.2H2O and Na2SeO4.H2SeO3.H2O crystals were compared. Similarities and differences are described. The spectroscopic manifestation of the presence of hydrogen bonds is discussed. Position of the bands corresponding to bending type of vibrations (in-plane and out-of plane) of hydrogen bonds is analyzed in the function of temperature. Small dynamic splitting of the bands due to weak interactions between ions is noticed.  相似文献   

15.
16.
Summary The new synthetic compound ZnFe 2 3+ (SeO3)4 forms at low-hydrothermal conditions at 220 °C. It belongs to the monoclinic system; the structure was determined by single-crystal X-ray diffraction in the space group Pc. The unit cell data are:a=8.196(4) Å,b=7.997(4) Å,c=8.033(4) Å, =92.27(3)°,V=526.1 Å3;Z=2. The structure of ZnFe 2 3+ (SeO3)4 contains two types of FeO6 octahedra, one distorted ZnO5 trigonal bipyramid, and four selenite groups. Formal clusters consisting of the ZnO5 group, edge-linked with both FeO6 groups and one SeO3 pyramid, are connected by common corners, involving three further selenite groups to a framework structure.
Die Kristallstruktur von ZnFe 2 3+ (SeO3)4
Zusammenfassung Die neue synthetische Verbindung ZnFe 2 3+ (SeO3)4 bildet sich bei niedrighydrothermalen Bedingungen (220°C). Die Kristallstruktur wurde mit Einkristallröntgenmethoden in der monoklinen Raumgruppe Pc gelöst. Die Zellparameter sind:a=8.196(4) Å,b=7.997(4) Å,c=8.033(4) Å, =92.27(3)°,V=526.1 Å3;Z=2. Die Kristallstruktur von ZnFe 2 3+ (SeO3)4 weist zwei Arten von FeO6-Oktaedern, eine verzerrte trigonale ZnO5-Dipyramide sowie vier Selenitgruppen auf. Formal können Cluster, bestehend aus dem ZnO5-Polyeder, kantenverknüpft mit den beiden FeO6-Gruppen sowie einer SeO3-Pyramide, beschrieben werden. Die Verknüpfung über Ecken zu einer Gerüststruktur erfolgt unter Beteiligung von drei weiteren Selenitgruppen.
  相似文献   

17.
18.
19.
The infrared and Raman spectra of NaH3(SeO3)2 and NaD3(SeO3)2 have been recorded from 24 to 300°K. The interpretation, assignments, and analysis of the spectral studies are presented on the paraelectric α phase (proton disordered), ferroelectric β phase (proton ordered) and ferroelectric γ phase (proton ordered). A discussion of a newly proposed proton-triggered phase transition mechanism and a possible origin of the hydrogen-bonded OH stretching region of KH2PO4-type ferroelectrics is given.  相似文献   

20.
It is a great challenge to develop UV nonlinear optical (NLO) material due to the demanding conditions of strong second harmonic generation (SHG) intensity and wide band gap. The first ultraviolet NLO selenite material, Y3F(SeO3)4, has been obtained by control of the fluorine content in a centrosymmetric CaYF(SeO3)2. The two new compounds represent similar 3D structures composed of 3D yttrium open frameworks strengthened by selenite groups. CaYF(SeO3)2 has a large birefringence (0.138@532 nm and 0.127@1064 nm) and a wide optical band gap (5.06 eV). The non-centrosymmetric Y3F(SeO3)4 can exhibit strong SHG intensity (5.5×KDP@1064 nm), wide band gap (5.03 eV), short UV cut-off edge (204 nm) and high thermal stability (690 °C). So, Y3F(SeO3)4 is a new UV NLO material with excellent comprehensive properties. Our work shows that it is an effective method to develop new UV NLO selenite material by fluorination control of the centrosymmetric compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号