首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetra(4‐carboxyphenyl)‐porphine iron(III) chloride · 2 CH3COOH · 4 H2O ( 1 ) was prepared via a hydrothermal synthesis approach starting from FeCl2 and 5,10,15,20‐tetrakis‐(4‐carboxyphenyl)‐21 H,23 H‐porphine in glacial acetic acid in the presence of KOH as a base and ytterbium(III) acetate as a template. Compound 1 was characterized by single crystal X‐ray diffraction and elemental analysis. Space group: P 1, Z = 2, unit cell dimensions at 200 K: a = 9.282(2), b = 20.239(5), c = 22.239(5) Å, α = 92.49(3), β = 99.87(3), γ = 90.78(3)°, R1 (observed) = 0.132, wR2 (all data) = 0.395. The architecture of the structure is determined by interporphyrin hydrogen bonding. Four iron porphyrin units form a very wide open channel with dimensions of circa 15.7 Å × 15.7 Å. No interpenetrating is observed.  相似文献   

2.
An electrothermal atomic absorption spectrometric method (ET-AAS) was developed for the direct determination of iron in intestinal Caco-2 cells after studying cell viability and proliferation using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT test). Zeeman background correction and end-capped graphite tubes with Lvov platforms were used. Samples were dissolved in dimethylsulfoxide (DMSO) and pipetted directly into the graphite tube. The preashing, pretreatment and atomization steps were optimized. The temperatures selected were 600, 1200, and 2100 °C, respectively. Stability measurements were performed using iron standard solutions in DMSO on the one hand and acidified cell solutions on the other. Direct measurement and standard addition were compared in order to determine possible influences of the matrix. The low detection limit of the ET-AAS method (1.3 g/L or 3.3 g/g) combined with the small sample quantities required are ideal for the determination of iron in cells due to the low iron content and the limited growth area of the cells. The method was developed for iron uptake studies for toxicological purposes.  相似文献   

3.
This study investigated the effects of extremely low frequency (ELF) magnetic field with/without iron(III) chloride (FeCl3) on bacterial growth and morphology. The ELF exposures were carried out using a pair of Helmholtz coil-based ELF exposure system which was designed to generate 50 Hz sinusoidal magnetic field. The field was approximately uniform throughout the axis of the coil pair. The samples which were treated or non-treated with different concentrations FeCl3 were exposed to 50 Hz, 2 millitesla (mT) magnetic field for 24 h. ELF effect on viability was assessed in terms of viable colony counts (in colony-forming unit per milliliter) with the standard plate count technique. Scanning electron microscopy was used to investigate the magnetic field effect on surface morphology of Escherichia coli. No significant results were seen in terms of cell viability between ELF and sham-exposed bacterial strains. Similarly, FeCl3 treatment did not change cell viability of E. coli samples. However, we observed some morphological changes on E. coli cell surfaces. Pore formations and membrane destruction were seen on the surface of 24 h ELF field-exposed cells. We concluded that ELF magnetic field exposure at 2 mT does not affect cell viability; however, it may affect bacterial surface morphology.  相似文献   

4.
An iron species derived from FeCl2 or FeCl3 by in situ reduction with zinc powder in the presence of imidazol-2-ylidene or bidentate nitrogen ligand could effectively catalyze intramolecular cycloisomerization of triynes to annulated benzenes. With a 2-iminomethylpyridine ligand, hydrates of FeCl2 and FeCl3 as well as their anhydrous ones could be used.  相似文献   

5.
Phosphanimine and Phosphoraneiminato Complexes of Iron. The Crystal Structures of [FeCl3(Me3SiNPEt3)], [FeCl2(Me3SiNPEt3)]2, [FeCl2(NPEt3)]2, and [Fe(O2C? CH3)2(NPEt3)]2 The phosphanimine complexes [FeCl3(Me3SiNPEt3)] (red-orange) and [FeCl2(Me3SiNPEt3)]2 (colourless) have been prepared by reactions of Me3SiNPEt3 with FeCl3 and FeCl2, respectively, in CH2Cl2 suspensions. Thermal decomposition of these donor-acceptor complexes in boiling toluene leads to the phosphoraneiminato complex [FeCl2(NPEt3)]2 (black), whereas [Fe(O2C? CH3)2(NPEt3)]2 (brown) is formed from iron(II) acetate and Me3SiNPEt3 in boiling acetonitrile. The complexes are characterized by IR spectroscopy and by crystal structure determinations. [FeCl3(Me3SiNPEt3)] (1) : Space group P21/c, Z = 8, structure determination with 4 673 unique reflections, R = 0.033. Lattice dimensions at ?15°C: a = 1 607.8, b = 1 602.0, c = 1 417.2 pm, β = 106.56°. 1 forms monomeric molecules with tetrahedrally coordinated iron atoms. Bond lengths in average: Fe? N = 196.9 pm, Fe? Cl = 219.7 pm. [FeCl2(Me3SiNPEt3)]2 (2) : Space group P21/c, Z = 4, structure determination with 4 992 unique reflections, R = 0.048. Lattice dimensions at 20°C: a = 1 457.9, b = 1 685.4, c = 1 507.3 pm, β = 116.74°. 2 forms dimeric molecules, which are associated by chloro bridges. The iron atoms are tetrahedrally coordinated with trans positions of the phosphanimine ligands. Both lengths in average: Fe? N = 202.2 pm, Fe? Clterminal = 224.7 pm, Fe? Cl bridge = 241.0 pm. [FeCl2(NPEt3)]2 (3): Space group P21/n, Z = 2, structure determination with 2763 unique reflections, R = 0.039. Lattice dimensions at ?70°C: a = 799.1, b = 1009.0, c = 1441.9 pm, β = 93.45°. 3 forms centrosymmetric dimeric molecules, in which the tetrahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands. Bond lengths in average: Fe? N = 191.4 pm, Fe? Cl = 222.7 pm. [Fe(O2C? CH3)2(NPEt3]2 (4): Space group P21/n, Z = 2, structure determination with 3005 observed unique reflections, R = 0.034. Lattice dimensions at -65°C: a = 886.4, b = 1444.6 pm, β = 90.60°. 4 forms centrosymmetric dimeric molecules, in which the octahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands with bond lengths Fe? N of 191.9 and 195.0 pm. The acetate groups are coordinated in a chelating fashion.  相似文献   

6.
The influence of p-terphenyl polyketides 1–3 from Aspergillus candidus KMM 4676 and cerebroside flavuside B (4) from Penicillium islandicum (=Talaromyces islandicus) against the effect of neurotoxins, rotenone and paraquat, on Neuro-2a cell viability by MTT and LDH release assays and intracellular ROS level, as well as DPPH radical scavenging activity, was investigated. Pre-incubation with compounds significantly diminished the ROS level in rotenone- and paraquat-treated cells. It was shown that the investigated polyketides 1–3 significantly increased the viability of rotenone- and paraquat-treated cells in two of the used assays but they affected only the viability of paraquat-treated cells in the LDH release assay. Flavuside B statistically increased the viability of paraquat-treated cells in both MTT and LDH release assays, however, it increased the viability of rotenone-treated cells in the LDH release assay. Structure–activity relationships for p-terphenyl derivatives, as well as possible mechanisms of cytoprotective action of all studied compounds, were discussed.  相似文献   

7.
Ammonium chloride and bromide, (NH4)Cl and (NH4)Br, act on elemental iron producing divalent iron in [Fe(NH3)2]Cl2 and [Fe(NH3)2]Br2, respectively, as single crystals at temperatures around 450 °C. Iron(III) chloride and bromide, FeCl3 and FeBr3, react with (NH4)Cl and (NH4)Br producing the erythrosiderites (NH4)2[Fe(NH3)Cl5] and (NH4)2[Fe(NH3)Br5], respectively, at fairly low temperatures (350 °C). At higher temperatures, 400 °C, iron(III) in (NH4)2[Fe(NH3)Cl5] is reduced to iron(II) forming (NH4)FeCl3 and, further, [Fe(NH3)2]Cl2 in an ammonia atmosphere. The reaction (NH4)Br + Fe (4:1) leads at 500 °C to the unexpected hitherto unknown [Fe(NH3)6]3[Fe8Br14], a mixed‐valent FeII/FeI compound. Thermal analysis under ammonia and the conditions of DTA/TG and powder X‐ray diffractometry shows that, for example, FeCl2 reacts with ammonia yielding in a strongly exothermic reaction [Fe(NH3)6]Cl2 that at higher temperatures produces [Fe(NH3)]Cl2, FeCl2 and, finally, Fe3N.  相似文献   

8.
The direct condensation of amines with β-ketoesters to produce functional enamine derivatives has been investigated with iron Lewis acid catalysts. FeCl3·6H2O shows good catalytic activity and makes possible the chemo- and stereoselective formations of (Z)-enamine derivatives from aliphatic and aromatic primary amines under mild conditions.  相似文献   

9.
A series of tridentate P, N, P ligands comprising a central pyridine unit and two pendent diarylphosphane moieties (2, 6‐bis(CH2PAr2)pyridine; Ar = phenyl ( 1 ), 2‐methylphenyl ( 2 ), 2, 4, 6‐trimethylphenyl ( 3 )) as well as the corresponding iron ( 1‐FeCl2 , 2‐FeCl2 , 3‐FeCl2 ) and cobalt ( 1‐CoCl2 , 2‐CoCl2 , 3‐CoCl2 ) complexes were synthesized and characterized. An X‐ray structure analysis of 2‐CoCl2 and 3‐CoCl2 exhibited a trigonal‐bipyramidal coordination geometry at the metal center, the two chlorine atoms and the nitrogen occupying the equatorial and the phosphane units the apical positions. IR analysis indicated, that in all complexes the pyridine unit is coordinated to the metal center. The cobalt compounds were applied as catalyst precursors for the polymerization of ethene after activation with MAO.  相似文献   

10.
2‐Pyridylmethylamine (amp) and 8‐aminochinoline (ach) readily form the following complexes with iron halides in methanol: [(amp)2FeCl2] ( 1a ), [(amp)2FeBr2] ( 1b ), [(ach)2Fe(MeOH)2]Br2 ( 1c ), and [(amp)FeCl2(μ‐OMe)]2 ( 2 ). Methanol was chosen as a solvent because these reactions are rather complex in ether. For example, FeCl3 forms the ionic complex pair [(dme)2FeCl2] [FeCl4] ( 3 ) with 1,2‐dimethoxyethane (dme). The reaction of FeBr2 with tridentate di(2‐pyridylmethyl)amine (dpa) and tetradentate 1,2‐dipyridyl‐1,2‐diaminoethane (dpdae) yields the complexes [(dpa)2Fe]Br2·2 MeOH ( 4 ) and [(dpdae)2Fe] [FeBr4] ( 5 ), respectively. Crystallographic and magnetochemical investigations show the high‐spin configuration for the complexes 1 and 2 , whereas the short Fe‐N distances of 4 clearly indicate a low‐spin state. Compound 2 exhibits an antiferromagnetic exchange interaction with a coupling constant J = ?29.4 cm?1 (H;af = ?J S;afA·S;afB).  相似文献   

11.
The behaviour of FeII and FeIII ions in combination with the potential ligand 1,4‐bis(2‐pyridyl‐methyl)piperazine (BPMP) under anhydrous conditions has been investigated. BPMP has been reacted with FeCl2, FeCl3 and [Fe(OTf)2(MeCN)2]. This led to the isolation of four new complexes, which were fully characterized and structurally investigated by single crystal X‐ray diffraction. It turned out that in the presence of chloride co‐ligands FeIII favours the tetradentate coordination mode of BPMP with the piperazine unit in a boat configuration, like for instance in [BPMP(Cl)Fe(μ‐O)FeCl3] or [BPMP‐FeCl2][FeCl4], ( 1 ). However, the employment of FeCl2 leads to the formation of a coordination polymer [BPMP‐FeCl2]n, ( 2 ), containing the piperazine ring in a chair configuration binding to two iron centres each. 2 can only be dissolved in very polar solvents like dmf which is capable of breaking up the polymeric structure under formation of [Cl2(dmf)Fe(μ‐BPMP‐1κ2N,N:2κ2N,N))Fe(dmf)Cl2]·2 dmf, ( 3 ). In contrast, using [Fe(OTf)2(MeCN)2] instead of FeCl2 as the starting material leads to a mononuclear FeII complex with BPMP bound in the desirable tetradentate fashion: [BPMP‐Fe(OTf)2], ( 4 ). Unlike other complexes with tetradentate N/py ligands the two residual ligands in 4 are bound almost trans to each other with the potential to adopt a cis orientation under oxidising conditions, and it will be interesting to exploit its catalytic properties in future.  相似文献   

12.
Two new iron(III) complexes and one iron(II) complex have been synthesized from the solvothermal reactions of FeCl3·6H2O with 3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole (Hbpt) in methanol or acetonitrile. KSCN acted as the reducing agent in the synthesis of iron(II) complex of 3 . [FeCl3(Hbpt)(H2O)]·H2O ( 1 ) crystallizes in the triclinic space group with a = 7.475(1), b = 9.468(2), c = 12.309(2) Å, α = 73.880(2), β = 74.746(2), γ = 81.849(2)°, V = 805.2(2) Å3, Z = 2. [Fe2(bpt)2Cl4] ( 2 ): orthorhombic space group Pnnm with a = 9.895(2), b = 10.632(2), c = 13.195(2) Å, V = 1388.1(4) Å3, Z = 2. [Fe2(bpt)2(MeOH)2Cl2] ( 3 ): orthorhombic space group Pbca with a = 14.4204(16), b = 9.8737(11), c = 19.792(2) Å, V = 2818.1(5) Å3, Z = 4. 1 features the first structurally characterized metal complex of the neutral Hbpt ligand in which the Hbpt ligand adopts an unprecedented zwitterionic form. 2 shows a neutral dinuclear iron(III) complex and the [Fe2(bpt)2]4+ unit is ideally planar. The two iron(III) ions separated by a distance of 4.408(2) Å are doubly triazolate‐bridged. Each dimeric unit is connected with six other dimeric ones via the bifurcated C‐H···Cl hydrogen bonds, these connections extend the dimeric moieties into a three‐dimensional molecular architecture. 3 is a neutral centrosymmetric dinuclear FeII complex, in which intermolecular moderate O‐H···N hydrogen bonding interactions between the methanol molecules and 4‐position nitrogen atoms of the triazolato groups extend the dinuclear species into a two‐dimensional supramolecular architecture of (4,4) topology. Magnetic studies indicate there exists an antiferromagnetic spin coupling in FeIII2 and FeII2 units via the double triazolate bridges in 2 and 3 .  相似文献   

13.
《Electroanalysis》2005,17(23):2129-2136
The investigation of the dissolved iron(III)–nitrilotriacetate–hydroxide system in the water solution (I=0.1 mol L?1 in NaClO4; pH 8.0±0.1) using differential pulse cathodic voltammetry, cyclic voltammetry, and sampled direct current (DC) polarography, was carried out on a static mercury drop electrode (SMDE). The dissolved iron(III) ion concentrations varied from 2.68×10?6 to 6×10?4 mol L?1 and nitrilotriacetate concentrations were 1×10?4 and 5×10?4 mol L?1. By deconvoluting of the overlapped reduction voltammetric peaks using Fourier transformation, four relatively stable, dissolved iron(III) complex species were characterized, as follows: [Fe(NTA)2]3?, mixed ligand complexes [FeOHNTA]? and [Fe(OH)2NTA]2?, showing a one‐electron quasireversible reduction, and binuclear diiron(III) complex [NTAFeOFeNTA]2?, detected above 4×10?4 mol L?1 of the added iron(III) ions, showing a one‐electron irreversible reduction character. The calculations with the constants from the literature were done and compared with the potential shifts of the voltammetric peaks. Fitting was obtained by changing the following literature constants: log β2([Fe(NTA)2]3?) from 24 to 27.2, log β1([FeNTA]?) from 8.9 to 9.2, log β2([Fe(NTA)2]4?) from 11.89 to 15.7 and log β2([Fe(OH)2NTA]3?) from 15.63 to 19. The determination of the electrochemical parameters of the mixed ligand complex [FeOHNTA]?, such as: transfer coefficient (α), rate constant (ks) and formal potential (E°') was done using a sampled DC polarography, and found to be 0.46±0.05, 1.0±0.3×10?3 cm s?1, and ?0.154±0.010 V, respectively. Although known previously in the literature, these four species have now for the first time been recorded simultaneously, i.e. proved to exist simultaneously under the given conditions.  相似文献   

14.
《化学:亚洲杂志》2017,12(20):2646-2651
Herein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe3+ or transferrin (Tf). Gd@C82(OH)22 or C60(OH)22 effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl3, GdCl3, C60(OH)22 or Gd@C82(OH)22 were obtained by SAXS. The results demonstrate that Tf homodimers can be decomposed into monomers in the presence of FeCl3, GdCl3 or C60(OH)22, but associated into tetramers in the presence of Gd@C82(OH)22. The larger change of SAXS shapes between Tf+C60(OH)22 and Tf+FeCl3 implies that C60(OH)22 is bound to Tf, blocking the iron‐binding site. The larger deviation of the SAXS shape from a possible crystal structure of Tf tetramer implies that Gd@C82(OH)22 is bound to the Tf tetramer, thus disturbing iron transport. This study well explains the inhibition mechanism of Gd@C82(OH)22 and C60(OH)22 on the iron uptake and the proliferation of A549 tumor cells and highlights the specific interactions of a nanomedicine with the target biomolecules in cancer therapy.  相似文献   

15.
The synthesis and single crystal X‐ray structure of the multifunctional acrylamide‐derived ligand N‐triazolylpropanamide ( 1 , = NTPA) are reported. The title compound was prepared in 72 % yield by Michael addition of 1, 2, 4‐triazole and acrylamide in the presence of Triton B (= trimethylbenzylammonium hydroxide) as catalyst. Treatment of 1 with FeCl3(H2O)6 in MeOH/MeCN led to reduction and formation of the iron(II) complex (NTPA)2FeCl2(MeOH)2 ( 2 , yellow prisms, 52 % yield). Both 1 and 2 were structurally characterized by X‐ray diffraction. Surprisingly, the NTPA ligands in 2 are coordinated to iron in a monodentate fashion through a triazole ring nitrogen atom. In the crystal, both compounds form supramolecular hydrogen‐bonded networks.  相似文献   

16.
Cancer-based magnetic theranostics has gained significant interest in recent years and can contribute as an influential archetype in the effective treatment of cancer. Owing to their excellent biocompatibility, minute sizes and reactive functional surface groups, magnetic nanoparticles (MNPs) are being explored as potential drug delivery systems. In this study, MgFe2O4 ferrite MNPs were evaluated for their potential to augment the delivery of the anticancer drug doxorubicin (DOX). These MNPs were successfully synthesized by the glycol-thermal method and functionalized with the polymers; chitosan (CHI), polyvinyl alcohol (PVA) and polyethylene glycol (PEG), respectively, as confirmed by Fourier transform infrared (FTIR) spectroscopy. X-ray diffraction (XRD) confirmed the formation of the single-phase cubic spinel structures while vibrating sample magnetometer (VSM) analysis confirmed the superparamagnetic properties of all MNPs. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed small, compact structures with good colloidal stability. CHI-MNPs had the highest DOX encapsulation (84.28%), with the PVA-MNPs recording the lowest encapsulation efficiency (59.49%). The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) cytotoxicity assays conducted in the human embryonic kidney (HEK293), colorectal adenocarcinoma (Caco-2), and breast adenocarcinoma (SKBR-3) cell lines showed that all the drug-free polymerized MNPs promoted cell survival, while the DOX loaded MNPs significantly reduced cell viability in a dose-dependent manner. The DOX-CHI-MNPs possessed superior anticancer activity (<40% cell viability), with approximately 85.86% of the drug released after 72 h in a pH-responsive manner. These MNPs have shown good potential in enhancing drug delivery, thus warranting further optimizations and investigations.  相似文献   

17.
Fe2+-montmorillonite with Fe2+ ions occupying cation exchange sites is an ideal transformation product in bentonite buffer material. In our previous study on preparation and characterization of Fe2+-montmorillonite, the montmorillonite sample that adsorbed Fe2+ ions on almost all of the cation exchange sites was prepared using a FeCl2 solution under an inert gas condition [N. Kozai, Y. Adachi, S. Kawamura, K. Inada, T. Kozaki, S. Sato, H. Ohashi, T. Ohnuki, T. Banba, J. Nucl. Sci. Technol. 38 (2001) 1141]. In view of the unstable nature of iron(II) chemical species, this study attempted to determine the potential contaminant iron chemical species in the sample. Nondestructive elemental analysis revealed that a small amount of chloride ions remained dispersed throughout the clay particles. The chloride ion retention may be due to the adsorption of FeCl+ ion pairs in the initial FeCl2 solution and the subsequent containment of the Cl ions that are dissociated from the FeCl+ ion pairs during excess salt removal treatment. Two explanations are advanced for the second process: the slow release of the remaining Cl ions from the collapsed interlayer of the montmorillonite, and the transformation of a minor fraction of the remaining FeCl+ ion pairs to iron(III) hydroxide chloride complexes having low solubility.  相似文献   

18.
The LBAs (Lewis acid-assisted Brønsted acid catalysis) is proposed as possible mechanistic process in the simple FeCl3-catalyzed Michael reactions of chalcones with active methylene compounds in organic solvents. And iron salts were found to be effective promoters in the asymmetric Michael addition of 4-hydroxycoumarin to α,β-unsaturated ketone, which resulted in excellent yield and high level of enantioselectivity (up to 91% ee) in the presence of low catalytic amount of iron and simple chiral primary amine.  相似文献   

19.
Black phosphorus (BP), the latest addition to the family of 2D layered materials, has attracted much interest owing to potential optoelectronics, nanoelectronics, and biomedicine applications. Little is known about its toxicity, such as whether it could be as toxic as white phosphorus. In response to the possibility of BP employment into commercial products and biomedical devices, its cytotoxicity to human lung carcinoma epithelial cells (A549) was investigated. Following a 24 h exposure of the cells with different BP concentrations, cell viability assessments were conducted using water‐soluble tetrazolium salt (WST‐8) and methylthiazolyldiphenyltetrazolium bromide (MTT) assays. The toxicological effects were found to be dose‐dependent, with BP reducing cell viabilities to 48 % (WST‐8) and 34 % (MTT) at 50 μg mL?1 exposure. This toxicity was observed to be generally intermediate between that of graphene oxides and exfoliated transition‐metal dichalcogenides (MoS2, WS2, WSe2). The relatively low toxicity paves the way to utilization of black phosphorus.  相似文献   

20.
The FeCl2/K2CO3 catalyst system was developed successfully for the N-alkylation of sulfonamides with benzylic alcohols via borrowing hydrogen method. XPS analysis suggested a possible catalyst cycle between Fe(II) and Fe(0). Under the optimized condition, the scope of the protocol was demonstrated in 21 different alkylation reactions. High yields, in general >90%, are achieved in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号