首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The freshly prepared sodium salts of ortho-phthalic acid and tetrabromo ortho-phthalic acid react with diaryltellurium dichlorides in chloroform to afford new dimeric organotellurium carboxylates, R2Te(C8X4O4)2 (X = H, Br). The new compounds contain fourteen membered rings and the detailed structure is discussed particularly in the light of the 1H NMR spectrum of (p-EtOC6H4)2Te(C8H4O4)2 which shows inequivalence of p-ethoxy groups. The sebacate derivatives of tellurium(IV) are oligomeric and iso- and terephthalic acids failed to give well defined products.  相似文献   

2.
Abstract

New triorganotin(IV) derivatives of dipeptides with general formulae, R3Sn(HL), where R = Me and Ph, and HL is the monoanion of histidinylalanine and histidinylleucine, have been synthesized and characterized on the basis of infrared (IR), multinuclear NMR (1H, 13C, and 119Sn), and 119Sn Mössbauer spectroscopic studies. These derivatives exhibit distorted trigonal-bipyramidal geometry around tin in which dipeptide anion acts as bidentate ligand coordinating through carboxyl oxygen and amino nitrogen. Ph3Sn(HHis-Ala),

Ph3Sn(HHis-Leu), and previously reported Ph2Sn(His-Ala), Me2Sn(His-Ala), n-Oct2Sn(His-Ala), Me2Sn(His-Leu), n-Oct2Sn(His-Leu), Ph3Sn(HTyr-Phe), Ph2Sn(Tyr-Phe), Bu2Sn-(Tyr-Phe), and n-Oct2Sn(Tyr-Phe) along with standard drugs, viz. phenyl butazone and indomethacin were screened for in vivo anti-inflammatory activity and acute toxicity (LD50). Diorganotin(IV) derivatives are more active than triorganotin(IV) derivatives. Me2Sn(His-Leu) shows the highest activity.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

3.
A new series of oxovanadium(IV) complexes formulated as [(HL)2VO]n·nSO4 (a), [(HL)VO(SO4)]2 (b), and [L2VO] (c), where HL=phenyl-2-picolylketone and its para-substituted derivatives have been synthesized and characterized. The i.r. data suggest that the ligands are neutral bidentate in classes (a) and (b) and uninegative bidentate in (c), coordinated to the vanadyl ion via the pyridine-N and keto- or enolato-O atoms. Complexes of class (a) showed mechanochromism upon grinding. Magnetic, u.v./vis. and e.s.r. data suggest that all the complexes have a square pyramidal structure with an unpaired electron in the dxy orbital in the solid and in solutions. Deoxygenation of the oxovanadium complexes gave the corresponding dichlorovanadium(IV) derivatives. Elemental analysis, magnetic and spectral studies indicated that the dichlorovanadium(IV) complexes are associated with a distorted trans-octahedral ligand field.  相似文献   

4.
Di- and tri-organotin(IV) derivatives of N -acetyltriglycine and N -benzoyltriglycine (HA) were obtained by refluxing equimolar mixtures of the ligand and the organotin(IV) oxide or hydroxide in methanol or acetone. According to the spectroscopic data, triorganotin(IV) derivatives adopt a trigonal-bipyramidal structure in which the planar R3SnIV unit is bonded by a monodentate carboxylate group and a donor group, presumably the amide CO. The reaction of HA with the appropriate diorganotin(IV) compounds gave both dicarboxylates R2SnA2, with six-coordinated tin, and dimeric tetraorganodistannoxanes {[R2SnA]2O}2, in which the tin atoms are essentially five-coordinated.  相似文献   

5.
Salicylidene-o-aminobenzothiol and its 5-chloro and 5-bromo derivatives, dibasic tridentate Schiff bases, dervied from the condensation of o-aminothiol and Salicylaldehyde, 5-chloro salicylaldehyde and 5-bromo salicylaldehyde, were used for coordination with Zr(IV), Th(IV) and UO2(VI) metal inos. The I:I (metal-ligand) stoichiometry of these complexes is shown by elemental analysis and conductometric titrations. Molecular structure of these complexes are proved by Infra-red spectroscopy and thermogravimetric analysis. Magnetic susceptibility measurements of Zr(IV), Th(IV) and UO2(VI) complexes show their diamagnetic and octahedral geometry. Results show that all the complexes have solvent molecules in coordination with metal ion.  相似文献   

6.
NO and O 2 molecules are the source of the oxygen atom for dicationic µ-oxo(diaryltellurium) dimers 2 (X=BF4, CF3SO3), which form upon chemical oxidation of 1 with NOBF4 (method A) or (CF3SO2)2O/O2 [method B, Eq. (a)]. The fate of the nitrogen atom of the oxidizing agent NOBF4 remains uncertain at this stage.  相似文献   

7.
In order to correlate 119Sn Mössbauer parameters and structural data for dimethyltin(IV) derivatives, the molecular structures of bis(acetato)dimethyltin(IV) and bis(trifluoroacetato)dimethyltin(IV) were determined by single crystal X-ray diffration. Crystals of Me2Sn(OOCCH3)2 are monoclinic, a = 26.282(4), b = 5.282(1), c = 14.434(3) Å, β = 101.17(2)°, Z = 8, space group C2/c, and those of [Me2Sn(OOCCF3)2]n are monoclinic, a = 8.444(1), b = 17.689(1), c = 15.368(1) Å, β = 93.013(9)°, Z = 8, space group Cc. The structures were solved by the Patterson method and were refined by full-matrix least-squares procedures to R = 0.025 and 0.027 (Rw = 0.023 and 0.030) for 2 298 and 4 182 reflections with I ≥ 3σ(F2), respectively.  相似文献   

8.
The synthesis, spectroscopy, and antitumor behavior of organotin(IV) complexes of 2,3-methylenedioxyphenylpropenoic acid are described. The spectroscopic data indicate 1 : 2 and 1 : 1 metal to ligand stoichiometry in case of di- and trioganotin(IV) compounds and hypervalency of Sn(IV) in trigonal bipyramidal and octahedral modes. Mass spectrometric and elemental analysis data support the solid and solution spectroscopic results. The complexes have been evaluated in vitro against crown gall tumor and bio-activity screenings showed in vitro biological potential. The nature of covalent attachments (methyl, ethyl, n-butyl, phenyl, and n-octyl) of Sn(IV) played a decisive role for bioactivity. All the compounds have been studied in solution by NMR (1H, 13C) and also in solid state using FTIR, mass spectrometry, and by X-ray crystallography. The molecular structure of Et2Sn(IV) and Me3Sn(IV) derivatives confirm the behavior of di- and tri-organotin(IV) compounds in solid state. Mono-organotin derivatives are octahedral both in solid and solution.  相似文献   

9.
The complexes Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI ), Bz2SnL2 ( VII ), and Ph3SnL ( VIII ), where “L” is ( E )‐3‐(3‐fluorophenyl)‐2‐phenyl‐2‐propenoate, have been prepared and structurally characterized by means of elemental analysis, infrared, mass, and multinuclear (1H, 13C, 119Sn) NMR spectral techniques. The spectroscopic results showed that the geometry around the Sn atom in triorganotin(IV) derivatives is four‐coordinated in noncoordinating solvent and behaves as five‐coordinated linear polymers with bridging carboxylate groups or five‐coordinated monomers, both acquiring trans‐R3SnO2 geometry for Sn in the solid state. While all the diorganotin(IV) derivatives may acquire trigonal bipyramidal structures in solution due to collapse of the Sn←OCO interaction and octahedral geometries in the solid state, which have been confirmed by the X‐ray crystallographic data of the compound III . The crystal structure of Et2SnL2 ( III ) has been determined by X‐ray crystallography and is found skew‐trapezoidal bipyramidal, which substantiates that the ligand acts as an anisobidentate chelating agent, thus rendering the Sn atom six coordinated. The crystal is monoclinic with space group C21/n. All the investigated compounds have also been screened for biocidal and cytotoxicity data. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:420–432, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20243  相似文献   

10.
The hitherto unknown methylchlorodisilazanes Cl2 meSi-NH-Sime 3 (IV), Cl2 meSi-NH-SimeCl2 (VII), Cl3Si-NH-Sime 2Cl (VIII) and Cl3Si-NH-SimeCl2 (IX) (Scheme 1) were prepared (equ. 6–11), characterized by their properties (Table 1) and transformed into the derivatives XI–XIII.Es wurden die bisher unbekannten Methylchlordisilazane (IV), (VII), (VIII) und (IX) dargestellt (Rkk. 6–11), charakterisiert (Tab. 1) und in einige Derivate (XI–XIII) übergeführt.

94. Mitt.:U. Wannagat undE. Bogusch, Mh. Chem.102, 1806 (1971).

Mit Auszügen aus den Diplomarbeiten a)J. Herzig (1966) und b)P. Schmidt (1966) sowie der DissertationM. Schulze (1968), alle Techn. Universität Braunschweig.  相似文献   

11.
The reaction of 2‐acetylpyridine‐N(4)‐cyclohexylthiosemicarbazone [(HAPCT), ( 1 )] ligand with organotin(IV) chloride(s) afforded the five new organotin(IV) complexes: [MeSnCl2(APCT)] ( 2 ), [BuSnCl2(APCT)] ( 3 ), [PhSnCl2(APCT)] ( 4 ), [Me2SnCl(APCT)] ( 5 ), and [Ph2SnCl(APCT)] ( 6 ). The ligand ( 1 ) and its organotin(IV) complexes ( 2–6 ) have been synthesized and characterized by CHN analyses, molar conductivity, UV–vis, FT IR, 1H, 13C, and 119Sn NMR spectral studies. The single crystal X‐ray diffraction studies indicated that [PhSnCl2(APCT)] ( 4 ) is six coordinated and strongly adopts a distorted octahedral configuration with the coordination through pyridine‐N, azomethine‐N, and thiolato‐S atoms of the ligand. The compound crystallizes into a monoclinic lattice with the space group P21/n. The ligand ( 1 ) and its organotin(IV) complexes ( 2–6 ) were assayed for in vitro antibacterial activity against Staphylococcus aureus, Escherichia coli, Enterobacter aerogenes, and Salmonella typhi. The screening results have shown that the organotin(IV) complexes ( 2–6 ) have better antibacterial activity than the free ligand. Furthermore, it has been shown that the diphenyltin(IV) derivative ( 6 ) exhibits significantly better activities than the other organotin(IV) derivatives ( 2–5 ). © 2012 Wiley Periodicals, Inc. Heteroatom Chem 24:43–52, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21061  相似文献   

12.
In order to determine the impact of different substituents and their positions on intermolecular interactions and ultimately on the crystal packing, unsubstituted N‐phenyl‐2‐phthalimidoethanesulfonamide, C16H14N2O4S, (I), and the N‐(4‐nitrophenyl)‐, C16H13N3O6S, (II), N‐(4‐methoxyphenyl)‐, C16H16N3O6S, (III), and N‐(2‐ethylphenyl)‐, as the monohydrate, C18H18N2O4S·H2O, (IV), derivatives have been characterized by single‐crystal X‐ray crystallography. Sulfonamides (I) and (II) have triclinic crystal systems, while (III) and (IV) are monoclinic. Although the molecules differ from each other only with respect to small substituents and their positions, they crystallized in different space groups as a result of differing intra‐ and intermolecular hydrogen‐bond interactions. The structures of (I), (II) and (III) are stabilized by intermolecular N—H…O and C—H…O hydrogen bonds, while that of (IV) is stabilized by intermolecular O—H…O and C—H…O hydrogen bonds. All four structures are of interest with respect to their biological activities and have been studied as part of a program to develop anticonvulsant drugs for the treatment of epilepsy.  相似文献   

13.
This study encompasses the synthesis and characterization of organotin(IV) derivatives of non-steroidal anti-inflammatory drug ibuprofen (IBF), viz. [(Me3Sn)(IBF)] ( 1 ), [(Bu3Sn)(IBF)] ( 2 ), [Ph3Sn(IBF)] ( 3 ), {[Me2Sn(IBF)]2O}2 ( 4 ) and [Bu2Sn(IBF)2] ( 5 ). The crystal structure of complex 3 , [Ph3Sn(IBF)], indicates a highly distorted tetrahedral (td) geometry with anisobidentate mode of coordination of the carboxylate group with tin atom, and a similar structure has been proposed for other two triorganotin(IV) derivatives. Moreover, the DFT (density functional theory) calculation and other studies have verified a dimer distannoxane type of structure for complex 4 , {[Me2Sn(IBF)]2O}2. Complex 5 has been found to exhibit a highly distorted octahedral geometry around the tin atom. To investigate the DNA binding profile of the synthesized complexes, viscosity measurement, UV–vis and fluorescence titrations were performed, which revealed an intercalative type of binding with DNA for IBF and complex 5 and external binding in case of the complexes 1 and 2 ; complexes 3 and 4 could not be studied owing to their insufficient solubility in tris buffer. Plasmid DNA fragmentation studies of IBF and complexes 1 , 2 and 5 indicate that they cleaved the pBR322 plasmid potentially. Further, the drugs IBF {2-[4-(2-methylpropyl)phenyl]propanoic acid}, MESNA (sodium 2-mercaptoethane-sulfonate), warfarin [2H-1-benzopyran-2-one,4-hydroxy-3-(3-oxo-1-phenylbutyl)], sulindac (2-{5-fluoro-1-[(4-methanesulfinylphenyl) methylidene]-2-methyl-1H-inden-3-yl}acetic acid) and their corresponding organotin(IV) complexes 1–19 (complexes 6–19 were synthesized/reported previously) were screened in vitro for cytotoxicity against human cancer cell lines viz. DU145 (prostate cancer), HCT-15 (colon adenocarcinoma), Caco-2 (colorectal adenocarcinoma), MCF-7 (mammary cancer), LNCaP (androgen-sensitive prostate adenocarcinoma) and HeLa (cervical cancer), through MTT reduction assay and the cause of cell death was investigated through acridine orange/ethidium bromide staining of cells and DNA fragmentation assay. The probable structure–cytotoxicity relationship is also discussed. The major role of apoptosis along with small necrosis was also validated by flow cytometry assay using annexin V–fluorescein isothiocyanate and propidium iodide analysis.  相似文献   

14.
In Order to test in vivo cytotoxicity of diorganotin(IV)-amoxicillin (amox) derivatives, mitotic chromosomes of Rutilus rubilio (Pisces, Cyprinidae) have been analyzed using two different chromosome-staining techniques. Results gathered after exposure of fish to the free amox · 3H2O, R2SnClamox · 2H2O, and R2Snamox · 2 2H2O (R = methyl, butyl and phenyl; amox = 6-[D(−)-β-amino-p-hydroxyphenylacetamido]penicillinate) suggest that methyl derivatives seem to exert a lower cytotoxicity than butyl and phenyl ones and that R2Snamox · 2 2H2O deriva-tives are more toxic than R2SnClamox · 2H2O at both 10−5 and 10−7mol dm−3 concentrations. The following structural lesions have been iden-tified by comparative analysis of mitotic chromo-somes from untreated specimens (controls) and specimens treated with diorganotin(IV)-amoxicillin derivatives: (1) differentially stained chromosome areas; (2) granular deeply stained zones along the chromosomal body; (3) arm breakages; and (4) side-arm bridges (pseudochiasmata).  相似文献   

15.
New organotin(IV) derivatives containing the anionic ligands bis(3,5‐dimethylpyrazol‐1‐yl)dithioacetate [LCS2] and bis(3,5‐dimethylpyrazol‐1‐yl)acetate [LCO2] have been synthesized from reaction between (CH3)2SnCl2 and lithium salts of the ligands. Mononuclear complexes of the type {[LCX2](CH3)2SnCl} (X = S or O) have been obtained and fully characterized by elemental analyses and FT‐IR in the solid state and by NMR (1H, 13C and 119Sn) spectroscopy, conductivity measurements and electrospray ionization mass spectrometry in solution. The acute toxicity of new organotin(IV) derivatives on rat was studied, comparing their effect with those of dimethyltin chloride (CH3)2SnCl2. The comparison of LD50 of organotin(IV) complexes and (CH3)2SnCl2 administered intraperitoneally, as a single dose, evaluated in vivo on rats, showed that toxicity decreases as follows: (CH3)2SnCl2 > LCO2 > LCS2. The effect of these organotin(IV) complexes on DNA was evaluated in vitro and in vivo on rats treated with different doses of these compounds (1/20 LD50 and 1/100 LD50). The lymphocyte DNA status was assessed by the comet assay, a rapid and sensitive single‐cell electrophoresis technique, used to detect primary DNA damage in individual cells. After 36 h from the start of treatment the two new organotin(IV) derivatives induced a significant rise in comet assay parameters, indicating an increasing presence of damaged DNA. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The electron impact mass spectra of 1-sulfonyl substituted derivatives of 5-fluorouracil were investigated. The substituents were CH3SO2 (compound I), CH3(CH2)3SO2 (II), C6H5SO2 (III) and p-CH3C6H4SO2 (IV).  相似文献   

17.
Four new organotin(IV) complexes with 2-hydroxynaphthaldehyde-N(4)-ethylthiosemicarbazone [(H2DNET), (1)] of the type [MeSnCl(DNET] (2), [BuSnCl(DNET)] (3), [PhSnCl(DNET)] (4), and [Ph2Sn(DNET] (5) have been synthesized by the direct reaction of H2DNET (1) with organotin(IV) chloride(s) in the presence of potassium hydroxide in absolute methanol. All the compounds were characterized by elemental analyses, molar conductivity, UV-Vis, IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of ligand (1) has been confirmed by X-ray single crystal diffraction. Spectroscopic data clearly suggested that Sn(IV) center is coordinated with the ONS tridentate ligand (H2DNET) and exhibits a five-coordinate geometry in solution. Antibacterial studies were carried out in vitro against four bacterial strains. All organotin(IV) compounds (2–5) showed good activity against various bacteria but lower activity than the reference drug (Ciprofloxacin). The results demonstrate that organic groups attached to tin(IV) moiety have significant effect on their biological activities. Among them, diphenyltin(IV) derivative 5 exhibits significantly good activity than the other organotin(IV) derivatives (2–4).  相似文献   

18.
Diorganotin(IV) derivatives have been synthesized by the reaction of R2SnL2 (R=n‐Bu 1 , Ph 2 ) with monohydrate disodium salt of iminodiacetic acid ( Na2L ) in 1 : 1 M/L ratio under reflux conditions. The compounds have been characterized by FT‐IR, NMR (1H and 13C) spectoscopy, electron ionization mass spectrometry (EIMS), thermogravimetric analyses (TGA) and single crystal XRD. FTIR data indicates a mono‐dentate binding mode of the carboxylic acid group as well as participation of the amino nitrogen and aqua oxygen in coordination with organotin(IV) moieties. NMR data demonstrates a tetra‐coordinated environment around tin(IV) in solution. Mass spectrometric and thermogravimetric analyses verify the close similarities between the molecular structures of both complexes. The thermal stability of diphenyltin(IV) derivative ( 2 ) was found slightly higher than that of the free ligand ( Na2L ). Single crystal X‐ray analysis of the complex 1 have shown a hexa‐coordinated geometry around Sn(IV) with trans configuration. There are evidences for the existence of intermolecular hydrogen bonding in the structure of the complexes. The products displayed significant antibacterial and antifungal activities in contrast to the biologically inactive ligand precursor. However, the hemolytic cytoxicity of the complexes was comparatively high than the free ligand.  相似文献   

19.
Summary. Equilibria studies in aqueous solution containing 25% dioxane (V/V) are reported for dimethyltin(IV) and trimethyltin(IV) (M) complexes with some imidazole derivatives (L). Stoichiometry and stability constants for the complexes formed were determined at 25°C and ionic strength 0.1M NaNO3. The results of the dimethyltin(IV) complexes showed the best fit of the titration curves when complexes ML, ML 2, ML 2H–1, and ML 2H–2 were expected beside the hydrolysis products of the dimethyltin(IV) cation, while the calculations of the trimethyltin(IV) complexes reported the presence of only the complexes ML, MLH–1, and the hydrolysis products of the trimethyltin(IV) cation. The concentration distribution of each species of the complexes in solution was evaluated. The stability of all complexes formed was investigated and discussed in terms of molecular structure of the ligand imidazole and the nature of the alkyltin cation. It is deduced that the stability of the complex formed increases as the basicity of the ligand imidazole is increased. On the other hand, the trimethyltin(IV) cation has a very low ability to form complexes compared to the dimethyltin(IV) cation.Received November 22, 2002; accepted (revised) March 3, 2003 Published online August 18, 2003  相似文献   

20.
Bimetallic chlorodi-/triorganotin(IV) derivatives of general formulas R2(H2O)SnLCSSSn(Cl)R2 (R=Me: 1; Ph: 2) and R3Sn(Na)LCSSSnR3·H2O (R=Bu: 3; Ph: 4) were prepared by reaction of iminodiacetic acid disodium salt hydrate (Na2LH) with CS2 and R2SnCl2/R3SnCl in methanol. The reaction between Na2LH, CS2, and PdCl2 produced [Na2LCSS]2Pd·2H2O (5) which was treated with R3SnCl to synthesize the heterobimetallic derivatives [R3Sn(Na)LCSS]2Pd·2H2O (R=Me: 6; Ph: 7). The complexes were characterized by microanalysis, spectroscopic, and thermogravimetric analyses. Elemental analysis data, mass fragmentation, and thermal degradation patterns supported the molecular composition of the complexes. FT-IR data indicated monodentate binding of carboxylate while a chelating coordination mode of the dithiocarboxylate was verified in the solid state. A five-coordinate tin(IV) was demonstrated in the solid state. In solution, a tetrahedral/trigonal bipyramidal configuration around Sn(IV) and a square planar geometry of Pd(II) was indicated by multinuclear NMR (1H and 13C) and UV-visible studies. The Pd(II) derivatives showed interaction with salmon sperm-DNA and caused an inhibition of alkaline phosphatase (ALPs). The antibacterial/antifungal potential of the coordination products varied with the nature of incorporated metal and a substitution pattern at tin(IV); the palladium metallation decreased the antimicrobial activities. The triorganotin(IV) products exhibited more powerful action against bacteria/fungi as compared to their diorganotin(IV) counterparts. The complexes displayed sufficiently lower hemolytic effects in vitro as compared to triton X-100 and slightly higher than PBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号