首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mao X  Wu Y  Xu L  Cao X  Cui X  Zhu L 《The Analyst》2011,136(2):293-298
To improve the electrocatalytic activities of carbon nanotubes (CNT) towards the oxidation of nicotinamide adenine dinucleotide (NADH), we derive them with a redox mediator, 1,10-phenanthroline-5,6-dione (PD), by the noncovalent functionalization method. The redox carbon nanotubes (PD/CNT/GC) show excellent electrocatalytic activities towards the oxidation of NADH (catalytic reaction rate constant, k(h) = 7.26 × 10(3) M(-1) s(-1)), so the determination of NADH can be achieved with a high sensitivity of 8.77 μA mM(-1) under the potential of 0.0 V with minimal interference. We also develop an amperometric ethanol biosensor by integration of alcohol dehydrogenase (ADH) within the redox carbon nanotubes (PD/CNT/GC). The ethanol biosensor exhibits a wide linear range up to 7 mM with a lower detection limit of 0.30 mM as well as a high sensitivity of 10.85 nA mM(-1).  相似文献   

2.
不同直径碳纳米管的抗电化学氧化性   总被引:1,自引:0,他引:1  
本文比较了由化学气相沉积法制备的不同直径(在100 nm以内)的多壁碳纳米管(CNT)的抗电化学氧化性.将CNT电极于1.2 V(vs.RHE)下电氧化120 h,记录氧化电流~时间变化曲线;X射线光电子能谱(XPS)分析氧化前后CNT的表面化学组成.结果表明,随着CNT直径的减小,其氧化电流降低,但其中以为10~20 nm的CNT电极氧化电流最小,表面氧的增量也最小,即被氧化的程度最低,抗电化学氧化性最强.根据不同直径CNT的缺陷位、不定型碳的丰度和碳原子的应力能,分析了其抗电化学氧化性差异的原因.  相似文献   

3.
Carbon nanotube (CNT) supported Pt nanoparticle catalysts have been prepared by spontaneous reduction of PtCl6(2-) ion as a result of direct redox reactions between PtCl6(2-) and oxygen-containing functional groups at defect sites of CNTs, which were introduced by chemical and electrochemical oxidation treatment of CNTs. The electrocatalytic properties of as-prepared Pt-CNT catalysts for methanol oxidation were investigated by chronopotentiometry and cyclic voltammetry. Compared with Pt catalysts prepared by hydrogen reduction and electrochemical deposition methods, Pt catalysts synthesized by functional CNT defects show excellent antipoisoning ability and long-term cycle stability.  相似文献   

4.
Oxidation of conical and cylindrical carbon nanotubes (CNTs) was studied by physicochemical methods including high-resolution transmission electron microscopy. Differences in mechanisms of oxidation of these CNTs were revealed. The oxidation of conical CNTs with nitric acid first results in the formation of oxygen-containing groups uniformly distributed over the CNT surface, and then the carbon material undergoes fragmentation and destruction. The treatment of cylindrical CNTs with nitric acid results in oxidation at defect sites followed by a decrease in the tube thickness and a change in the pore structure of the carbon material.  相似文献   

5.
Ternary NiCoPd nanocatalyst dispersed on multi-walled carbon nanotubes (CNTs), NiCoPd/CNTs, was synthesized using a simple and green sonochemical method. The as-prepared NiCoPd/CNT hybrids were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The electrochemical measurements revealed that the ternary NiCoPd/CNTs exhibited an enhanced electrocatalytic activity for the methanol oxidation reaction (MOR), much superior to those of the binary NiPd/CNT and CoPd/CNT, as well as monometallic Pd/CNT counterparts, which likely resulted from the synergistic function of the dopant metals of Ni and Co.  相似文献   

6.
A simple method is devised to deposit well-dispersed Pd nanoparticles on multi-walled carbon nanotubes (CNTs). Pd nanoparticles (1–3 nm) prepared in ethanol were transferred to toluene solution and modified by organic molecule benzyl mercaptan which acts as a cross linker between Pd nanoparticles and CNTs. The morphology and structure of the resulting Pd/CNT nanocomposite were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that Pd nanoparticles were highly dispersed and effectively anchored on CNTs. The excellent electrocatalytic activity of the Pd/CNT nanocomposite for the oxidation of hydrazine was demonstrated by cyclic voltammetry.  相似文献   

7.
Adsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)n films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O2; as a result, they are more attractive compared to (CNT/polyelectrolyte)n and (NP/polyelectrolyte)n films because of their multifunctionality.  相似文献   

8.
Catalytically synthesized carbon nanotubes (CNTs) such as those prepared via chemical vapor deposition (CVD) contain metallic impurities including Fe, Ni, Co, and Mo. Transition metal contaminants such as Fe can participate in redox cycling reactions that catalyze the generation of reactive oxygen species and other products. Through the nature of the CVD growth process, metallic nanoparticles become encased within the CNT graphene lattice and may still be chemically accessible and participate in redox chemistry, especially when these materials are utilized as electrodes in electrochemical applications. We demonstrate that metallic impurities can be selectively dissolved and/or passivated during electrochemical potential cycling. Anomalous Fe dissolution and passivation behavior is observed in neutral (pH=6.40+/-0.03) aqueous solutions when using multiwalled CNTs prepared from CVD. Fe particles contained within these CNTs display intriguing, potential-dependent Fe redox activity that varies with supporting electrolyte composition. In neutral solutions containing dibasic sodium phosphate, sodium acetate, and sodium citrate, FeII dissolution and surface confined FeII/III redox activity are significant despite Fe being encapsulated within CNT graphene layers. However, no apparent Fe dissolution is observed in 1 M potassium nitrate solutions, suggesting that the electrolyte composition plays an important role in observing FeII dissolution, passivation, and surface confined FeII/III redox activity. Between potentials of 0 and -1.1 V versus Hg/Hg2SO4, the primary redox-active Fe species are surface FeII/III oxides/oxyhydroxides. This FeII/III surface oxide redox chemistry can be completely suppressed by passivating Fe through repeated cycling of the CNTs in supporting electrolyte. By increasing the potential to more negative values (>-1.3 V), FeII dissolution may be induced in electrolyte solutions containing acetate and phosphate and inhibited by addition of sodium benzoate, which adsorbs on exposed Fe particles, effectively passivating them. Finally, we observe that the FeII/III redox chemistry or subsequent passivation does not affect the onset of oxygen reduction at nitrogen-doped CNTs, suggesting that the surface-bound FeII species is not the primary catalytically active site for oxygen reduction in these materials.  相似文献   

9.
The synthesis and characterization of catalysts based on nanomaterials, supported on multi-walled carbon nanotubes (CNT) for ethylene glycol (EG) oxidation is investigated. Platinum (Pt) and platinum-ruthenium (Pt-Ru) nanoparticles are deposited on surface-oxidized multi-walled carbon nanotubes [Pt/CNT; Pt-Ru/CNT] by the aqueous solution reduction of the corresponding metal salts with glycerol. The electrocatalytic properties of the modified electrodes for oxidation of ethylene glycol in acidic solution have been studied by cyclic voltammetry (CV), and excellent activity is observed. This may be attributed to the small particle size of the metal nanoparticles, the efficacy of carbon nanotubes acting as good catalyst support and uniform dispersion of nanoparticles on CNT surfaces. The nature of the resulting nanoparticles decorated multiwalled carbon nanotubes are characterized by scanning electron microscopy (SEM) and transmission electron microscopic (TEM) analysis. The cyclic voltammetry response indicates that Pt-Ru/CNT catalyst displays a higher performance than Pt/CNT, which may be due to the efficiency of the nature of Ru species in Pt-Ru systems. The fabricated Pt and Pt-Ru nanoparticles decorated CNT electrodes shows better catalytic performance towards ethylene glycol oxidation than the corresponding nanoparticles decorated carbon electrodes, demonstrating that it is more promising for use in fuel cells.  相似文献   

10.
The application of the Clar aromatic sextet valence bond (VB) model to extended, defect-free single-walled carbon nanotubes (CNTs) with roll-up vectors (m, n) provides a real space model of their electronic structure. If m - n = 3k, where k is an integer, then all pi-electrons can be represented by aromatic sextets, and the CNT is fully benzenoid; the converse is also true. Since m - n = 3k is known to be a necessary criterion for conductivity in CNTs, only fully benzenoid CNTs are metallic, and only potentially metallic CNTs are fully benzenoid. This behavior contrasts with that of planar polycyclic aromatic hydrocarbons, in which the fully benzenoid structures are known to have large HOMO-LUMO gaps. For CNTs that are not fully benzenoid, e.g., m - n = 3k + l, where l = 1 or 2 and k is an integer, a seam of double bonds wraps about an otherwise benzenoid CNT at the chiral angle - 60 degrees or the chiral angle, respectively. Nucleus-independent chemical shift calculations on hydrogen-terminated CNT segments support this, and show that the magnetic manifestation of aromatic sextets is not due to electron correlation. The resonance hybrid of the Clar VB structures corresponds to patterns occasionally observed in scanning tunneling microscopy images of CNTs.  相似文献   

11.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

12.
Electrocatalytic oxidation of DNA-wrapped carbon nanotubes   总被引:1,自引:0,他引:1  
The electrical properties of single-walled carbon nanotubes (CNT) are of intense interest due to applications in nanoelectronics. Cyclic voltammetry and chronoamperometry have been used to explore the Ru(bpy)32+ electrocatalytic oxidation of DNA-solubilized carbon nanotubes. Dramatic current enhancements are observed with the addition of a CNT wrapped in an oligonucleotide sequence containing no oxidizable guanines. The current enhancement observed is solely due to the oxidation of the CNT by electrogenerated Ru(III) and subsequent recycling of the metal complex redox reaction. The chronoamperometric (CA) response is biphasic, and rate constants derived from the CA response were used to develop digital simulations of the cyclic voltammograms collected at the same CNT concentrations. Ten successive C' reactions were required to account for all of the observed signal. The oxidation of the CNT is a multielectron process, and this effect arises from the multiple electron donor sites in the carbon nanotube as well as the over oxidation of each site.  相似文献   

13.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

14.
We report the tuning of the redox properties of iron and iron oxide nanoparticles by encapsulation within carbon nanotubes (CNTs) with varying inner diameters. Raman spectroscopy was employed to investigate the interaction of the encapsulated nanoparticles with the CNTs. A red shift of the Fe-O mode is observed in the nanoparticles deposited on the outer CNT surfaces with respect to bulk Fe2O3. However, this mode is found to be stepwise blue-shifted with decreasing inner diameter in the CNT-encapsulated Fe2O3 nanoparticles, suggesting an enhanced interaction of Fe2O3 with the inner CNT surface as its curvature increases. The autoreduction of the encapsulated Fe2O3 is significantly facilitated inside CNTs with respect to the outside nanoparticles. Interestingly, it becomes more facile with decreasing CNT channel diameter as evidenced by temperature programmed reaction, in situ XRD, and Raman spectroscopy. The oxidation of encapsulated metallic Fe nanoparticles on the other hand is retarded in comparison to that of the outside Fe particles as shown by in situ XRD and gravimetrical measurements with an online microbalance. We attribute this tunable redox behavior of transition metal nanoparticles inside CNTs to a particular electronic interaction of the encapsulates with the interior CNT surface, which stabilizes the metallic state of Fe.  相似文献   

15.
Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.  相似文献   

16.
Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)–CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL–CNT composite paper. Cyclic voltammograms revealed that the GOx/CL–CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.  相似文献   

17.
An effective and facile in situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of Au NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAuCl4 to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.  相似文献   

18.
In this study, we modified carbon nanotubes (CNTs) by grafting with poly(ethylene glycol) (PEG) using the “grafting to” method. The PEG-grafted CNT (CNT-g-PEG) was cast on indium tin oxide (ITO) electrode to investigate the electrocatalytic activity of CNT to the redox reactions of the Fe(CN)63−/4−as a probe using cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic activity of CNT was correlated with CNT dispersion in the cast film on ITO as a function of pH of aqueous solution from which the film was cast. The CNT dispersions in aqueous solutions of different pH and in the cast films were examined by visual observation and zeta potential, scanning electron microscopy and transmission electron microscopy, respectively. At a pH in the range of 3–11 at which ITO electrode was modified, two functionalized CNT (fCNT and CNT-g-PEG) were both found to electrocatalyze the redox reactions of the Fe(CN)63−/4−probe and the PEG grafts in CNT-g-PEG could help CNT adhere to the electrode to obtain durable modified electrode. The more uniform CNT dispersions in aqueous solutions and in the cast films appeared to have greater electrocatalytic acitivity.  相似文献   

19.
The adsorption of NO(2) molecules on defective multiwalled carbon nanotubes has been studied by soft-x-ray photoemission. The valence band and carbon core-level spectra have been acquired before, during, and after NO(2) exposure. The spectra show a reversible decrease of the density of states at the top of the valence band when NO(2) molecules are adsorbed on the (carbon nanotubes) CNTs. No shift of the C 1s spectra has been observed. Theoretical calculations, using density-functional theory, have been performed on the CNT + NO(2) system, considering semiconducting nanotubes with different diameters and introducing a Stone-Wales [Chem. Phys. Lett. 128, 501 (1986)] defect. The calculation confirms the decrease of the density of states at the top of the valence band in the CNT + NO(2) system, while close to the adsorption site new states appear very close to the Fermi level.  相似文献   

20.
Production of aqueous colloidal dispersions of carbon nanotubes   总被引:19,自引:0,他引:19  
Stable homogeneous dispersions of carbon nanotubes (CNTs) have been prepared by using sodium dodecyl sulfate (SDS) as dispersing agent. To our knowledge, it is the first report to quantitatively characterize colloidal stability of the dispersions by UV-vis spectrophometric measurements. When the sediment time reaches 500 h, the supernatant CNT concentration drops as much as 50% for the bare CNT suspension, compared to 15% with the addition of SDS. Furthermore, after 150 h, no precipitation is found for CNT/SDS dispersions, exhibiting an extreme stability. Zeta potential, auger electron microscopy, and FTIR analysis are employed to investigate the adsorption mechanism in detail. It has been concluded that the surfactant containing a single straight-chain hydrophobic segment and a terminal hydrophilic segment can modify the CNTs-suspending medium interface and prevent aggregation over long periods. The morphology of the CNT dispersions is observed with optical microscopy. An intermediate domain of homogeneously dispersed nanotubes exhibits an optimum at 0.5 wt% CNTs and 2.0 wt% SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号