首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of the anatase phase of titania were treated under vacuum to create Ti(3+) surface-defect sites and surface O(-) and O(2) (-) species (indicated by electron paramagnetic resonance (EPR) spectra), accompanied by the disappearance of bridging surface OH groups and the formation of terminal Ti(3+)-OH groups (indicated by IR spectra). EPR spectra showed that the probe molecule [Re(3)(CO)(12)H(3)] reacted preferentially with the Ti(3+) sites, forming Ti(4+) sites with OH groups as the [Re(3)(CO)(12)H(3)] was adsorbed. Extended X-ray absorption fine structure (EXAFS) spectra showed that these clusters were deprotonated upon adsorption, with the triangular metal frame remaining intact; EPR spectra demonstrated the simultaneous removal of surface O(-) and O(2) (-) species. The data determined by the three complementary techniques form the basis of a schematic representation of the surface chemistry. According to this picture, during evacuation at 773 K, defect sites are formed on hydroxylated titania as a bridging OH group is removed, forming two neighboring Ti(3+) sites, or, when a Ti(4+)-O bond is cleaved, forming a Ti(3+) site and an O(-) species, with the Ti(4+)-OH group being converted into a Ti(3+)-OH group. When the probe molecule [Re(3)(CO)(12)H(3)] is adsorbed on a titania surface with Ti(3+) defect sites, it reacts preferentially with these sites, becoming deprotonated, removing most of the oxygen radicals, and healing the defect sites.  相似文献   

2.
The EPR g factors of the trigonal Ti3+ center A in LiF:Ti3+ and two additional trigonal Ti3+ centers B and C in LiF:Ti3+:Mg2+ crystals are calculated from the third-order perturbation formulas based on the cluster approach. From the calculations and by considering the Ti3+ displacement along 111 axis obtained by ENDOR experiment, the defect models for the three Ti3+ centers are suggested. For center A, there are two possible models: (i) [Ti3+F3-O3(2-)] cluster and (ii) [Ti3+F6-] cluster with the Ti3+ off-center caused by a neighboring Li+ vacancy (VLi+) at <111> axis. The latter seems the more likely. The defect models of centers B and C are the [Ti3+F3-O(3)2-] clusters associated with a neighboring: Mg2+ ion at the Li+ site along 111 axis in the vicinity of three F- ions and three O2- ions, respectively. The reasonableness of these models is discussed.  相似文献   

3.
Black single crystals of the new dodecahalogenotrimetallate In(4)Ti(3)Br(12) were obtained by reacting InBr(3) with Ti-wire at 450 °C in a silica tube sealed under vacuum. In(4)Ti(3)Br(12) (Pearson symbol hR57, space group R3?m, Z = 3, a = 7.3992(8) ?, c = 36.673(6) ?, 643 refl., 25 param., R(1)(F) = 0.025; wR(2)(F(2)) = 0.046) is a defect variant of a 12 L-perovskite. In(+) cations are 12-fold coordinated in two different ways: In1 as an anticuboctahedron and In2 as a cuboctahedron. In both cases the 5s(2) configuration results in 3 short, 6 medium, and 3 long In-Br distances which might be explained as lone pair effect or second order Jahn-Teller instability. Furthermore there are isolated linear trimers [Ti(3)Br(12)](4-) consisting of facesharing octahedra similar to [Ru(3)Cl(12)](4-). The [Ti(3)Br(12)](4-)-unit has to be described as a mixed-valent d(1)-d(2)-d(1) system. According to magnetic measurements, the Ti-atoms in In(4)Ti(3)Br(12) show strong antiferromagnetic interactions (Θ = -1216(6) K) which might be addressed as weak Ti(3+)-Ti(2+)-Ti(3+) bonds. For comparison, single crystals of K(3)Ti(2)X(9) (X = Cl, Br) were synthesized and their structures refined. The rotation of the Ti(2)X(9)(3-) dimers reduced the symmetry of the well-known Cs(3)Cr(2)Cl(9) type from P6(3)/mmc to P6(3)/m and resulted in the formation of merohedral twins. According to the unit cell volumes In(+) is smaller than K(+) in all cases.  相似文献   

4.
The electronic structures of [Cu(terpy)(2)](2+) and [Cu(bpp)(2)](2+) (bpp = 2,6-di[pyrazol-1-yl]pyridine) are different, when doped into [M(bpp)(2)][BF(4)](2) (M(2+) = Fe(2+) or Zn(2+)). The [Cu(terpy)(2)](2+) dopant is a typical pseudo-Jahn-Teller elongated copper(II) center. However, the [Cu(bpp)(2)](2+) sites show EPR spectra consistent with a tetragonally compressed {d(z(2))}(1) configuration.  相似文献   

5.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

6.
The optical band positions and EPR g factors g(i) (i = x, y, z) of Cu(H(2)O)(6)(2+) clusters in pure Tutton salts M(2)Cu(SO(4))(2)·6H(2)O (M = NH(4), Rb) are calculated from the complete diagonalization (of energy matrix) method based on the cluster approach. In the calculation, the superposition model with the structural data is used to obtain the crystal-field parameters. The calculated results are in reasonable agreement with the experimental values, suggesting that the complete diagonalization method and superposition model are effective in the studies of optical and EPR data. The g factors g(i) of Cu(H(2)O)(6)(2+) clusters in Cu(2+)-doped isomorphous diamagnetic Tutton salts M(2)Zn(SO(4))(2)·6H(2)O are also studied from the same method. It is found that the approximately tetragonally compressed Zn(H(2)O)(6)(2+) octahedra in the host crystals change to the approximately tetragonally elongated Cu(H(2)O)(6)(2+) octahedra in the impurity centers. The causes concerning the Jahn-Teller effect are discussed. It appears that in some cases the octahedral environment of an impurity M(I) in crystals differs from that of the replaced host ion, but is close to the one in the isomorphous pure crystals where M(I) is the host ion rather than the impurity ion.  相似文献   

7.
VO(2+) doped single crystal of Ba(2)Zn(HCOO)(6)(H2O)(4) (BZFA) were investigated using electron paramagnetic resonance (EPR) technique at ambient temperature. Detailed investigation of EPR spectra indicated that the VO(2+) substitutes the Zn(2+) in the structure. The sites with different orientations were observed for VO(2+) in Ba(2)Zn(HCOO)(6)(H2O)(4).single crystal, but the only intense site among these sites was evaluated to obtain spin-Hamiltonian parameters, which are the principal axis values of the g and the hyperfine tensors. The covalent bonding parameter for VO(2+) and Fermi contact term were calculated using the spin-Hamiltonian parameters.  相似文献   

8.
The electron paramagnetic resonance spectra of Cu(2+) impurities in [Co(nicotinamide)(2)(H(2)O)(4)](saccharinate)(2) single crystals have been studied at ambient temperature in three mutually perpendicular planes. The angular variation of the spectra shows that the Cu(2+) ion substitutes the Co(2+) site in the lattice. The EPR spectra of Cu(2+) ions are characteristic of tetragonally elongated octahedral site. The spin-Hamiltonien parameters were obtained from the single crystal EPR analysis. The ground-state wave function of Cu(2+) ion in the lattice has been constructed.  相似文献   

9.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

10.
Reaction of GaCl(3) with 1 mol equiv of [14]aneS(4) in anhydrous CH(2)Cl(2) gives the exocyclic chain polymer [GaCl(3)([14]aneS(4))] (1) whose structure confirms trigonal bipyramidal coordination at Ga with a planar GaCl(3) unit. In contrast, using [16]aneS(4) and GaCl(3) or [16]aneSe(4) and MCl(3) (M = Ga or In) in either a 1:1 or a 1:2 molar ratio produces the anion-cation complexes [GaCl(2)([16]aneS(4))][GaCl(4)] (2) and [MCl(2)([16]aneSe(4))][MCl(4)] (M = Ga, 3 and M = In, 4) containing trans-octahedral cations with endocyclic macrocycle coordination. The ligand-bridged dimer [(GaCl(3))(2){o-C(6)H(4)(SMe)(2)}] (5) is formed from a 2:1 mol ratio of the constituents and contains distorted tetrahedral Ga(III). This complex is unusually reactive toward CH(2)Cl(2), which is activated toward nucleophilic attack by polarization with GaCl(3), producing the bis-sulfonium species [o-C(6)H(4)(SMeCH(2)Cl)(2)][GaCl(4)](2) (6), confirmed from a crystal structure. In contrast, the xylyl-based dithioether gives the stable [(GaCl(3))(2){o-C(6)H(4)(CH(2)SEt)(2)}] (8). However, replacing GaCl(3) with InCl(3) with o-C(6)H(4)(CH(2)SEt)(2) preferentially forms the 4:3 In:L complex [(InCl(3))(4){o-C(6)H(4)(CH(2)SEt)(2)}(3)] (9) containing discrete tetranuclear moieties in which the central In atom is octahedrally coordinated to six bridging Cl's, while the three In atoms on the edges have two bridging Cl's, two terminal Cl's, and two mutually trans S-donor atoms from different dithioether ligands. GaCl(3) also reacts with the cyclic bidentate [8]aneSe(2) to form a colorless, extremely air-sensitive adduct formulated as [(GaCl(3))(2)([8]aneSe(2))] (10), while InCl(3) gives [InCl(3)([8]aneSe(2))] (14). Very surprisingly, 10 reacts rapidly with O(2) gas to give initially the red [{[8]aneSe(2)}(2)][GaCl(4)](2) (11) and subsequently the yellow [{[8]aneSe(2)}Cl][GaCl(4)] (12). The crystal structure of the former confirms a dimeric [{[8]aneSe(2)}(2)](2+) dication, derived from coupling of two mono-oxidized {[8]aneE(2)}(+?) cation radicals to form an Se-Se bond linking the rings and weaker transannular 1,5-Se···Se interactions across both rings. The latter (yellow) product corresponds to discrete doubly oxidized {[8]aneSe(2)}(2+) cations (with a primary Se-Se bond across the 1,5-positions of the ring) with a Cl(-) bonded to one Se. Tetrahedral [GaCl(4)](-) anions provide charge balance in each case. These oxidation reactions are clearly promoted by the Ga(III) since [8]aneSe(2) itself does not oxidize in air. The new complexes have been characterized in the solid state by IR and Raman spectroscopy, microanalysis, and X-ray crystallography where possible. Where solubility permits, the solution characteristics have been probed by (1)H, (77)Se{(1)H}, and (71)Ga NMR spectroscopic studies.  相似文献   

11.
A series of new metalloradical rhodium and iridium complexes [M(II)(cod)(N-ligand)](2+) in the uncommon oxidation state +II were synthesized by one-electron oxidation of their [M(I)(cod)(N-ligand)](+) precursors (M=Rh, Ir; cod=(Z,Z)-1,5-cyclooctadiene; and N-ligand is a podal bis(pyridyl)amine ligand: N,N-bis(2-pyridylmethyl)amine (dpa), N-(2-pyridylmethyl)-N-(6-methyl-2-pyridylmethyl)amine (pla), or N-benzyl-N,N-bis(6-methyl-2-pyridylmethyl)amine (Bn-dla). EPR spectroscopy, X-ray diffraction, and DFT calculations reveal that each of these [M(II)(cod)(N-ligand)](2+) species adopts a square-pyramidal geometry with the two cod double bonds and the two pyridine fragments in the basal plane and the N(amine) donor at the apical position. The unpaired electron of these species mainly resides at the metal center, but the apical N(amine) donor also carries a considerable fraction of the total spin density (15-18 %). Density functional calculations proved a valuable tool for the analysis and simulation of the experimental EPR spectra. Whereas the M(II)(olefin) complexes are quite stable as solids, in solution they spontaneously transform into a 1:1 mixture of M(III)(allyl) species and protonated M(I)(olefin) complexes (in the forms [M(I)(olefin)(protonated N-ligand)](2+) for M=Rh and [M(III)(H)(olefin)(N-ligand)](2+) for M=Ir). Similar reactions were observed for the related propene complex [M(II)(propene)(Me(2)tpa)](2+) (Me(2)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl)amine). The decomposition rate of the [M(II)(cod)(N-ligand)](2+) species decreases with increasing N-ligand bulk in the following order: dpa>pla>Bn-dla. Decomposition of the most hindered [M(II)(cod)(Bn-dla)](2+) complexes proceeds by a second-order process. The kinetic rate expression v=k(obs)[M(II)](2) in acetone with k(obs)=k'[H(+)][S], where [S] is the concentration of additional coordinating reagents (MeCN), is in agreement with ligand-assisted dissociation of one of the pyridine donors. Solvent coordination results in formation of more open, reactive species. Protonation of the noncoordinating pyridyl group increases the concentration of this species, and thus [H(+)] appears in the kinetic rate expression. The kinetic data are in agreement with bimolecular hydrogen-atom transfer from M(II)(cod) to another M(II) species (DeltaH( not equal)=11.5+/-2 kcal mol(-1), DeltaS( not equal)=-27+/-10 cal K(-1) mol(-1), and DeltaG( not equal)(298 K)=19.5+/-5 kcal mol(-1)).  相似文献   

12.
The axial Ti2+ center in a nearly wholly cubic ZnS crystal is assigned to the Ti2+ ion on the hexagonal site of wurtzite structure caused by stacking faults. On the ground of the assignment, the EPR parameters (zero-field splitting D, g factor g( parallel) and g-anisotropy Deltag=g( parallel)-g( perpendicular)) of the axial Ti2+ center are calculated from the high-order perturbation formulas based on the cluster approach for the EPR parameters of 3d2 ion in trigonal symmetry. From the calculations, the local atom-position parameter u(loc) (which is different from the corresponding parameter u in the host wurtzite structure) and hence the defect structure of the Ti2+ center are estimated. The results (the calculated EPR parameters and the defect structure) are discussed.  相似文献   

13.
Defect structures of BaTiO(3) and the like co-doped with variable-valence acceptors and donors are not clear particularly in transition from acceptor domination to donor domination with increasing oxygen activity. We have, thus, examined the electrical conductivity and thermoelectric power of BaTiO(3) co-doped with a variable-valence acceptor Mn(Mn(Ti)', Mn(Ti)') and a fixed-valence donor Y(Y(ba)·) in different co-doping ratios (m(d)/m(a)) as functions of oxygen activity in the range of -20 < log?a(O(2))≤ 0 at elevated temperatures of 900-1100 °C. Their systematic variations with m(d)/m(a) and log?a(O(2)) are reported, and thereby defect structures of the co-doped BaTiO(3) depending on m(d)/m(a) are determined. It is found that for the co-doping ratio 1 < m(d)/m(a) < 2, the Fermi level is pinned at a few kT's around the deep level of Mn(Ti)' across the otherwise p-type semiconducting log?a(O(2))-region of Mn-singly doped BaTiO(3), and attributed to deep acceptor-shallow donor mutual compensation 2[Mn(Ti)'] + [Mn(Ti)'] ≈ [Y(ba)·], thus turning otherwise p-type semiconducting BaTiO(3) semi-insulating.  相似文献   

14.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

15.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

16.
Oxidation of Os(2)(hpp)(4)Cl(2), 1 (hpp = the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine), with (FeCp(2))PF(6) produces air-stable [Os(2)(hpp)(4)Cl(2)]PF(6), 2. This is the first structurally confirmed metal-metal bonded paddlewheel compound having an M(2)(7+) core. The Os-Os distances for two crystalline forms, 2.2acetone and 2.hexane, are 2.3309(4) and 2.3290(6) A, respectively. EPR, (1)H NMR, and magnetization data indicate that 2 has an unpaired electron and an exceptionally low g value of 0.791 +/- 0.037. An electrochemical study shows that there is a quasireversible wave corresponding to a more highly oxidized species with an unprecedented Os(2)(8+) core.  相似文献   

17.
It has been experimentally observed that Ti doping of bulk ZrO(2) induces a large red-shift of the optical absorption edge of the material from 5.3 to 4.0 eV [Livraghi et al., J. Phys. Chem. C, 2010, 114, 18553-18558]. In this work, density functional calculations based on the hybrid functional B3LYP show that Ti dopants in the substitutional position to Zr in the tetragonal lattice cause the formation of an empty Ti 3d band about 0.5 eV below the bottom of the conduction band. The optical transition level ε(opt)(0/-1) from the topmost valence state to the lowest empty Ti impurity state is found at 4.9 eV in a direct band gap of 5.7 eV. The calculated shift is consistent with the experimental observation. The presence of Ti(3+) species in Ti-doped ZrO(2), probed by means of electron paramagnetic resonance (EPR), is rationalized as the result of electron transfers from intrinsic defect states, such as oxygen vacancies, to substitutional Ti(4+) centers.  相似文献   

18.
Two new transition-metal gallophosphates, (H(2)C(4)H(10)N(2))(3)[(Ti(2.5)(H(2)O)(4)Ga(5.5)(PO(4))(10)].2H(2)O (TGP-1) and [H(3.5)(C(4)H(13)N(3))(2)][(Ni(0.5)(OH)(4)Ga(5.5)(PO(4))(3)(HPO(4))(4)].2H(2)O (NGP-1), have been synthesized under mild hydrothermal conditions and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, electron paramagnetic resonance, electron probe microanalysis, and magnetic susceptibility data. TGP-1 exhibits a unique two-dimensional structure consisting of tetrahedral and octahedral metals centers and is the foremost paramagnetic TiGaPO material ever prepared. NGP-1 as well represents the first NiGaPO compound and adopts a layer structure that is constructed from hexameric M-O clusters of trigonal bipyramids and octahedra. In both compounds, the transition metals incorporate with gallium into octahedral sites only, while the four- and five-coordinated metals centers are only Ga(3+) ions. The unique sites for Ti(3+) and Ni(2+) ions have been initially elucidated from single-crystal structure refinements and further confirmed by bond-valence-sum calculations, EPR, and magnetic susceptibility studies. Crystal data: TGP-1, monoclinic, P2(1)/c; a = 25.692(2) A, b = 9.6552(8) A, c = 9.8418(8) A, beta = 96.737(2)(o) , V = 2424.5(3) A(3), and Z = 2; NGP-1, monoclinic, C2/c, a = 20.8363(12) A, b = 11.9546(7) A, c = 16.4577(9) A, beta = 117.285(1)(o) , V = 3643.3(1) A(3), Z = 4.  相似文献   

19.
By using the complete diagonalization of energy matrix of 3d1 ions in trigonal symmetry, the EPR parameters (g factors g( parallel), g( perpendicular) and zero-field splitting D) of the trigonal Ti3+-Ti3+ pair in beryl crystal are calculated. In the calculations, the exchange interaction in the Ti3+-Ti3+ pair is taken as the perturbation and the local trigonal distortion in the defect center is considered. The results (which are in agreement with the experimental values) are discussed.  相似文献   

20.
Reaction of manganese(II) perchlorate hexahydrate with a methanol solution of 1-thia-4,7-diazacyclononane ([9]aneN(2)S) resulted in the isolation of the manganese(II) complex [Mn([9]aneN(2)S)(2)](ClO(4))(2). The X-ray structure of this complex is reported: crystal system orthorhombic, space group Pbam, No. 55, a = 7.937(2) ?,b = 8.811(2) ?, c = 15.531(3) ?, Z = 2, R = 0.0579. The complex is high spin (S = (5)/(2)) with an effective magnetic moment (&mgr;(eff)) 5.82 &mgr;(B) at 298 K and 5.65 &mgr;(B) at 4.2 K. Computer simulation of the Q-band EPR spectrum of [Mn([9]aneN(2)S)(2)](ClO(4))(2) yields g = 1.99 +/- 0.01, |D| = 0.19 +/- 0.005 cm(-)(1), and E/D = 0.04 +/- 0.02. For the analogous hexaamine complex [Mn([9]aneN(3))(2)](ClO(4))(2) ([9]aneN(3) = 1,4,7-triazacyclononane) analysis of the EPR spectra produced the following values: g = 1.98 +/- 0.01, |D| = 0.09 +/- 0.003 cm(-)(1), and E/D = 0.1 +/- 0.01. The spin Hamiltonian parameters for [Mn([9]aneN(2)S)(2)](ClO(4))(2) derived from the EPR spectra produced a good fit to the magnetic susceptibility data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号