首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Discrete Mathematics》1999,200(1-3):61-77
We say (n, e) → (m, f), an (m, f) subgraph is forced, if every n-vertex graph of size e has an m-vertex spanned subgraph with f edges. For example, as Turán proved, (n,e)→(k,(k2)) for e> tk − 1(n) and (n,e) (k2)), otherwise. We give a number of constructions showing that forced pairs are rare. Using tools of extremal graph theory we also show infinitely many positive cases. Several problems remain open.  相似文献   

2.
Let X be the vertex set of KnA k-cycle packing of Kn is a triple (X,C,L), where C is a collection of edge disjoint k-cycles of Kn and L is the collection of edges of Kn not belonging to any of the k-cycles in C. A k-cycle packing (X,C,L) is called resolvable if C can be partitioned into almost parallel classes. A resolvable maximum k-cycle packing of Kn, denoted by k-RMCP(n), is a resolvable k-cycle packing of Kn, (X,C,L), in which the number of almost parallel classes is as large as possible. Let D(n, k) denote the number of almost parallel classes in a k-RMCP(n). D(n, k) for k = 3, 4 has been decided. When nk (mod 2k) and k ≡ 1 (mod 2) or n ≡ 1 (mod 2k) and k ∈{6, 8, 10, 14}∪{m: 5≤m≤49, m ≡ 1 (mod 2)}, D(n, k) also has been decided with few possible exceptions. In this paper, we shall decide D(n, 5) for all values of n≥5.  相似文献   

3.
We partially characterize the rational numbers x and integers n 0 for which the sum ∑k=0 knxk assumes integers. We prove that if ∑k=0 knxk is an integer for x = 1 − a/b with a, b> 0 integers and gcd(a,b) = 1, then a = 1 or 2. Partial results and conjectures are given which indicate for which b and n it is an integer if a = 2. The proof is based on lower bounds on the multiplicities of factors of the Stirling number of the second kind, S(n,k). More specifically, we obtain for all integers k, 2 k n, and a 3, provided a is odd or divisible by 4, where va(m) denotes the exponent of the highest power of a which divides m, for m and a> 1 integers.

New identities are also derived for the Stirling numbers, e.g., we show that ∑k=02nk! S(2n, k) , for all integers n 1.  相似文献   


4.
Let G be a k-regular vertex transitive graph with connectivity κ(G)=k and let mk(G) be the number of vertex cuts with k vertices. Define m(n,k)=min{mk(G): GTn,k}, where Tn,k denotes the set of all k-regular vertex transitive graphs on n vertices with κ(G)=k. In this paper, we determine the exact values of m(n,k).  相似文献   

5.
In this paper we solve the following problem: Given an integer m, construct a digraph with exactly one source s, exactly one sink t and exactly m arcs such that the number of paths from s to t is maximized.  相似文献   

6.
Let G = (V,E) be a graph with m edges. For reals p ∈ [0, 1] and q = 1- p, let mp(G) be the minimum of qe(V1) +pe(V2) over partitions V = V1V2, where e(Vi) denotes the number of edges spanned by Vi. We show that if mp(G) = pqm-δ, then there exists a bipartition V1, V2 of G such that e(V1) ≤ p2m - δ + pm/2 + o(√m) and e(V2) ≤ q2m - δ + qm/2 + o(√m) for δ = o(m2/3). This is sharp for complete graphs up to the error term o(√m). For an integer k ≥ 2, let fk(G) denote the maximum number of edges in a k-partite subgraph of G. We prove that if fk(G) = (1 - 1/k)m + α, then G admits a k-partition such that each vertex class spans at most m/k2 - Ω(m/k7.5) edges for α = Ω(m/k6). Both of the above improve the results of Bollobás and Scott.  相似文献   

7.
The generalized column incidence graph of a matroid base is defined, and it is shown that all elements on a minimal path in this graph lie in a common circuit. Also, an algorithm is provided which lists all bases of a matroid and calculates the Whitney and Tutte polynomials. The complexity of this algorithm is shown to be O(mN(n- m)(c(M) + m)), where Mis a matroid of rank mon a set of cardinality nNis the number of bases of M, and c(M) is the complexity of checking independence in M.  相似文献   

8.
研究带有维修时间限制的时间和位置效应平行机排序问题,涉及同型机和非同类机两种机器类型.工件的实际加工时间同时受到位置效应和时间效应影响,且机器具有维修限制.目标函数由机器负载,总完工时间与总等待时间组成.非同类机情形下,通过将排序问题转化为指派问题,给出多项式时间算法,其算法的时间复杂度为Onk+2/(k-1)!).同型机情形下通过转化目标函数,使用匹配算法得出排序问题的多项式时间解,其时间复杂度为O((2n+m+n log nnk-1/(k-1)!).  相似文献   

9.
We provide two algorithms for finding dependence graphs both in a full transversal matroid and in its dual, a strict gammoid. The first algorithm is based on directed paths in the directed graph associated with a strict gammoid; its complexity is O(|L|(|V-L|+|E|)), where L is the link-set of the gammoid. The second algorithm is based on a special property of Gaussian elimination in a matrix of indeterminates representing a full transversal matroid; it complexity is o(m2n), where m is the rank of the matroid and n the cardinality of the underlying set. We provide an algorithm for listing all bases in, and calculating the Whitney and Tutte polynomials for, a full transversal matroid or a strict gammoid. The complexity of this algorithm is 0(N(n-m) (|E| + m2)), where N is the number of bases.  相似文献   

10.
A graph G is locally n-connected (locally n-edge connected) if the neighborhood of each vertex of G is n-connected (n-edge connected). The local connectivity (local edge-connectivity) of G is the maximum n for which G is locally n-connected (locally n-edge connected). It is shown that if k and m are integers with O k < m, then a graph exists which has connectivity m and local connectivity k. Furthermore, such a graph with smallest order is determined. Corresponding results are obtained involving the local connectivity and the local edge-conectivity.  相似文献   

11.
Let πi :EiM, i=1,2, be oriented, smooth vector bundles of rank k over a closed, oriented n-manifold with zero sections si :MEi. Suppose that U is an open neighborhood of s1(M) in E1 and F :UE2 a smooth embedding so that π2Fs1 :MM is homotopic to a diffeomorphism f. We show that if k>[(n+1)/2]+1 then E1 and the induced bundle f*E2 are isomorphic as oriented bundles provided that f have degree +1; the same conclusion holds if f has degree −1 except in the case where k is even and one of the bundles does not have a nowhere-zero cross-section. For n≡0(4) and [(n+1)/2]+1<kn we give examples of nonisomorphic oriented bundles E1 and E2 of rank k over a homotopy n-sphere with total spaces diffeomorphic with orientation preserved, but such that E1 and f*E2 are not isomorphic oriented bundles. We obtain similar results and counterexamples in the more difficult limiting case where k=[(n+1)/2]+1 and M is a homotopy n-sphere.  相似文献   

12.
Let sk(n) be the largest integer such that every n-point interval order with no antichain of more than k points includes an sk(n)-point semiorder. When k = 1, s1(n) = n since all interval orders with no two-point antichains are chains. Given (c1,...,c5) = (1, 2, 3, 4), it is shown that s2(n) = cn for n 4, s3(n) = cn for n 5, and for all positive n, s2 (n+4) =s2(n)+3, s3(n+5) = s3(n)+3. Hence s2 has a repeating pattern of length 4 [1, 2, 3, 3; 4, 5, 6, 6; 7, 8, 9, 9;...], and s3 has a repeating pattern of length 5 [1, 2, 3, 3, 4; 4, 5, 6, 6, 7; 7, 8, 9, 9, 10;...].

Let s(n) be the largest integer such that every n-point interval order includes an s(n)-point semiorder. It was proved previously that for even n from 4 to 14, and that s(17) = 9. We prove here that s(15) = s(16) = 9, so that s begins 1, 2, 3, 3, 4, 4,..., 8, 8, 9, 9, 9. Since s(n)/n→0, s cannot have a repeating pattern.  相似文献   


13.
Given a set X of points in the plane, two distinguished points s,tX, and a set Φ of obstacles represented by line segments, we wish to compute a simple polygonal path from s to t that uses only points in X as vertices and avoids the obstacles in Φ. We present two results: (1) we show that finding such simple paths among arbitrary obstacles is NP-complete, and (2) we give a polynomial-time algorithm that computes simple paths when the obstacles form a simple polygon P and X is inside P. Our algorithm runs in time O(m2n2), where m is the number of vertices of P and n is the number of points in X.  相似文献   

14.
Let S be a subdivision of d into n convex regions. We consider the combinatorial complexity of the image of the (k - 1)-skeleton of S orthogonally projected into a k-dimensional subspace. We give an upper bound of the complexity of the projected image by reducing it to the complexity of an arrangement of polytopes. If k = d − 1, we construct a subdivision whose projected image has Ω(n(3d−2)/2) complexity, which is tight when d 4. We also investigate the number of topological changes of the projected image when a three-dimensional subdivision is rotated about a line parallel to the projection plane.  相似文献   

15.
We present a method of decomposing a simple polygon that allows the preprocessing of the polygon to efficiently answer visibility queries of various forms in an output sensitive manner. Using O(n3logn) preprocessing time and O(n3) space, we can, given a query point q inside or outside an n vertex polygon, recover the visibility polygon of q in O(logn+k) time, where k is the size of the visibility polygon, and recover the number of vertices visible from q in O(logn) time.

The key notion behind the decomposition is the succinct representation of visibility regions, and tight bounds on the number of such regions. These techniques are extended to handle other types of queries, such as visibility of fixed points other than the polygon vertices, and for visibility from a line segment rather than a point. Some of these results have been obtained independently by Guibas, Motwani and Raghavan [18] .  相似文献   


16.
We describe in this paper two on-line algorithms for covering planar areas by a square-shaped tool attached to a mobile robot. Let D be the tool size. The algorithms, called Spanning Tree Covering (STC) algorithms, incrementally subdivide the planar area into a grid of D-size cells, while following a spanning tree of a grid graph whose nodes are 2D-size cells. The two STC algorithms cover general planar grids. The first, Spiral-STC, employs uniform weights on the grid-graph edges and generates spiral-like covering patterns. The second, Scan-STC, assigns lower weights to edges aligned with a particular direction and generates scan-like covering patterns along this direction. Both algorithms cover any planar grid using a path whose length is at most (n+m)D, where n is the total number of D-size cells and mn is the number of boundary cells, defined as cells that share at least one point with the grid boundary. We also demonstrate that any on-line coverage algorithm generates a covering path whose length is at least (2−)lopt in worst case, where lopt is the length of the optimal off-line covering path. Since (n+m)D2lopt, the bound is tight and the STC algorithms are worst-case optimal. Moreover, in practical environments mn, and the STC algorithms generate close-to-optimal covering paths in such environments.  相似文献   

17.
刘瑶 《运筹学学报》2021,25(2):115-126
给定两个非负整数s和t,图G的(s,t)-松弛强k边着色可表示为映射c:E(G)→[k],这个映射满足对G中的任意一条边e,颜色c(e)在e的1-邻域中最多出现s次并且在e的2-邻域中最多出现t次.图G的(s,t)-松弛强边着色指数,记作x'(s,t)(G),表示使得图G有(s,t)-松弛强k边着色的最小k值.在图G中...  相似文献   

18.
Let us denote ab=max(a,b) and ab=a+b for and extend this pair of operations to matrices and vectors in the same way as in linear algebra. We present an O(n2(m+n log n)) algorithm for finding all essential terms of the max-algebraic characteristic polynomial of an n×n matrix over with m finite elements. In the cases when all terms are essential, this algorithm also solves the following problem: Given an n×n matrix A and k{1,…,n}, find a k×k principal submatrix of A whose assignment problem value is maximum.  相似文献   

19.
It is shown that any m×n±1 matrix may be embedded in a Hadamard matrix of order kl, where k and l are the least orders greater than or equal to m and nrespectively in which Hadamard matrices exist.  相似文献   

20.
In this paper, the nonlinear dispersive Zakharov–Kuznetsov ZK(mnk) equations are solved exactly by using the Adomian decomposition method. The two special cases, ZK(2, 2, 2) and ZK(3, 3, 3), are chosen to illustrate the concrete scheme of the decomposition method in ZK(mnk) equations. General formulas for the solutions of ZK(mnk) equations are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号