首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules.  相似文献   

2.
The influence of common cationic surfactants on the physical properties of differently composed polyelectrolyte films prepared by the layer-by-layer (LbL) technology was investigated. Free-standing polyelectrolyte films as microcapsules showed a fast, strong response to the addition of less than 1 mM cationic surfactant cetyltrimethylammonium bromide (CeTAB). As a function of the polyelectrolyte composition, the behavior of the capsules varied from negligible changes to complete disintegration via strong swelling. The response of microcapsules consisting of (poly(allylamine hydrochloride)(PAH)/poly(styrene sulfonate)(PSS))(4) was associated with a 5-fold volume increase, a fast switch of permeability, and in the case of fluorescently labeled films a 4-fold increase in fluorescence intensity. The kinetics and strengths of the interaction process were investigated by confocal laser scanning microscopy (CLSM) and fluorescence spectroscopy. Also, the relative stabilities of the polycation/polyanion and surfactant/polyanion complexes were determined. A mechanism was suggested to explain the interactions between the cationic surfactants and polyelectrolyte capsules. The strong response can be exploited in potential applications such as the triggered release of drugs or other encapsulated materials, the fluorescence-based detection of cationic detergents, and a switchable stopper in microchannels. However, the high sensitivity of LbL films to traces of cationic surfactants can also limit their applicability to the encapsulation of drugs or other materials because pharmaceutical or technical formulations often contain cationic surfactants as preservatives such as benzalkonium salts (BAC). It was demonstrated that undesired capsule opening can be effectively prevented by cross-linking the polyelectrolyte multilayers.  相似文献   

3.
By using a combination of atomic force and confocal microscopy, we explore the deformation properties of multilayer microcapsules filled with a solution of strong polyelectrolyte. Encapsulation of polyelectrolyte was performed by regulation of the multilayer shell permeability in water-acetone solutions. The "filled"capsules prepared by this method were found to be stiffer than "hollow" ones, which reflects the contribution of the excess osmotic pressure to the capsule stiffness. The force-deformation curves contain three distinct regimes of reversible, partially reversible, and irreversible deformations depending on the degree of compression. The analysis of the shape of compressed capsules and of the inner polyelectrolyte spacial distribution allowed one to relate the deformation regimes to the permeability of the multilayer shells for water and inner polyelectrolyte at different stage of compression.  相似文献   

4.
Microcapsules loaded with vitamin K3 (VK3), biotin, or insulin were prepared by using a novel coating technology based on the layer-by-layer (LbL) deposition of oppositely charged polyelectrolytes onto microcrystal templates. This produced multilayered, polymeric shells of varying thickness around the crystalline cores. Dissolution of the core material (VK3 with ethanol, biotin with basic solution, and insulin with acidic solution), resulted in its release through the shells. Microelectrophoresis was employed to monitor the microcrystal coating process; confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) were used to verify multilayer coating and the formation of hollow polymer shells following removal of the microcrystal templates. The release rates of both VK3 and insulin decreased as the wall thickness (the number of polyelectrolyte layers deposited onto the microcrystal cores), increased. The release time could be varied by a factor of more than ten, depending on the number of polyelectrolyte layers applied. Following the addition of 70 mass % ethanol, the solubility of VK3 increased by as much as 170-fold, resulting in an increased rate of VK3 release. By selecting appropriate polymer materials for the shells, and by controlling the number of polyelectrolyte layers applied, shells of various thickness, stiffness, aqueous solubility, dispersibility, biocompatibility, and permeability can be constructed.  相似文献   

5.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

6.
In this paper, novel hollow polyelectrolyte multilayer tubes from poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) were prepared: Readily available glass fiber templates are coated with polyelectrolytes using the layer-by-layer technique, followed by subsequent fiber dissolution. Depending on the composition of the polymeric multilayer, stable hollow tubes or tubes showing a pearling instability are observed. This instability corresponds to the Rayleigh instability and is a consequence of an increased mobility of the polyelectrolyte chains within the multilayer. The well-defined stable tubes were characterized with fluorescence microscopy, confocal laser scanning microscopy, and atomic force microscopy (AFM). The tubes were found to be remarkably free of defects, which results in an impermeable tube wall for even low molecular weight molecules. The mechanical properties of the tubes were determined with AFM force spectroscopy in water, and because continuum mechanical models apply, the Young's modulus of the wall material was determined. Additionally, scaling relations for the dependency of tube stiffness on diameter and wall thickness were validated. Because both parameters can be experimentally controlled by our approach, the deformability of the tubes can be varied over a broad range and adjusted for the particular needs.  相似文献   

7.
The temperature-dependent behavior of hollow polyelectrolyte multilayer capsules consisting of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(styrene sulfonate) (PSS) with a different number of layers was investigated in aqueous media using confocal laser scanning microscopy, scanning and transmission electron microscopy, atomic force microscopy, and elemental analysis. Capsules with an even number of layers exhibited a pronounced shrinking at elevated temperature resulting in a transition to a dense sphere, whereas capsules with an odd number of layers swelled during heating to 5-fold of their initial size followed by their rupture. This effect increases for odd layer numbers and decreases for even layer numbers with increasing layer number. According to elemental analysis, an excess of PDADMAC monomers exists within the multilayers of capsules with an odd number of layers leading to a repulsion between the positive charges, whereas shells with an even number of layers have a balanced ratio between the oppositely charged polyions, so that the temperature-dependent behavior is controlled by the different interactions between polyelectrolytes and the bulk water. At a certain temperature, the polyelectrolyte material softens thus facilitating any rearrangement. Besides incubation temperature, the duration of heating has an influence on the restructuring of the multilayers.  相似文献   

8.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

9.
The effect of ultrasonic treatments of different intensity and duration on the integrity and permeability of polyelectrolyte capsules was investigated both in poly(allylamine)/poly(styrene sulfonate) and Fe(3)O(4)/poly(allylamine)/poly(styrene sulfonate) polyelectrolyte capsules. Ultrasonic treatment of polyelectrolyte capsules induces the destruction of the polyelectrolyte shell and the release of the encapsulated material even at short (5 s) sonification times. The presence of magnetite nanoparticles significantly improves the efficiency of the ultrasonically stimulated release of the encapsulated compounds and enables magnetically controlled delivery to the desired site before ultrasonic treatment. Release of the encapsulated compound induced at ultrasonic power comparable to those of ultrasonic generators applied in medicine, demonstrating practical application of the ultrasonically triggered capsule opening in medicine.  相似文献   

10.
By using a combination of atomic force and confocal microscopy, we explore the effect of 1:1 electrolyte (NaCl) on the stiffness of polyelectrolyte microcapsules. We study the "hollow" and "filled" (with polystyrene sulfonate) capsules. In both cases the shells are composed of layers of alternating polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH). The stiffness of both "hollow" and "filled" capsules was found to be largest in water. It decreases with salt concentration up to approximately 3 mol/L and gets quasi-constant in more concentrated solutions. The "filled" capsules are always stiffer than "hollow." The observed softening correlates with the salt-induced changes in morphology of the multilayer shells detected with the scanning electron microscopy. It is likely that at concentrations below approximately 3 mol/L the multilayer shell is in a "tethered" state, so that the increase in salt concentration leads to a decrease in number of ionic cross-links and, as a result, in the stiffness. In contrast, above the critical concentration of approximately 3 mol/L multilayer shells might be in a new, "melted," state. Here the multilayer structure is still retained, but sufficient amount of ionic cross-links is broken, so that further increase in salt concentration does not change the capsule mechanics. These ideas are consistent with a moderate swelling of multilayers at concentrations below approximately 3 mol/L and significant decrease in their thickness in more concentrated solutions measured with surface plasmon spectroscopy.  相似文献   

11.
We describe the fabrication of multilayers and microcapsules with biologically designed targeting activity using chemoenzymatic synthesized carbohydrate-branched polyelectrolytes. A novel cationic d-galactose-branched copolymer [poly(vinyl galactose ester-co-methacryloxyethyl trimethylammonium chloride), PGEDMC] is alternated with poly(styrene sulfonate) (PSS) to form thin multifilms by the layer-by-layer (LbL) technique on such different solid surfaces as quartz slides, poly(ethylene terephthalate) (PET) films, silicon wafers, and polystyrene (PS) microparticles. The experimental protocols were first optimized on flat, smooth silica substrates using UV-vis, contact angle, and atomic force microscopy (AFM) measurements. The film properties of PGEDMC/PSS multilayers are modified by varying polyelectrolyte concentration, ionic strength, and counteranion types. Hollow capsules were formed after the removal of colloidal templates; transmission (TEM) and scanning (SEM) electron microscopy were used to verify the LbL process integrity. PGEDMC/PSS planar films and capsules carrying beta-galactose as recognition signals have specific recognition abilities with peanut agglutinin (PNA) lectin rather than concanavalin A (Con A) lectin observed by fluorescence spectroscopy.  相似文献   

12.
Ag/polyelectrolyte (PE) hollow spheres were prepared using PE capsules as microreactors and electroless deposition of Ag. The external layer of the PE capsule was found to have a great effect on the morphology and permeability of the Ag shell. A positive surface charge will form compact and continuous Ag shells whereas a negative surface charge will form expanded and discontinuous shells. After removing the PE, hollow spheres of Ag with different morphologies were obtained.  相似文献   

13.
Stable hollow polyelectrolyte capsules were produced by the layer‐by‐layer assembling of non‐biodegradable polyelectrolytes – poly(allylamine) and poly(styrenesulfonate) on melamine formaldehyde microcores followed by the core decomposition at low pH. A proteolytic enzyme, α‐chymotrypsin, was encapsulated into these microcapsules with high yields of up to 100%. The encapsulation procedure was based on the protein adsorption onto the capsule shells and on the pH‐dependent opening and closing of capsule wall pores. The protein in the capsules retained a high activity, and thermo‐ and storage stability. The nanostructured polyelectrolyte shell protected the proteinase from a high molecular weight inhibitor. Such enzyme‐loaded capsules can be used as microreactors for biocatalysis.  相似文献   

14.
This paper describes the fabrication of polyelectrolyte multilayer film which combines preassembly of poly(allylamine hydrochloride) (PAH) and 5,10,15,20-tetraphenyl-21H,23H-porphine-p,p',p' ',p' '-tetrasulfonic acid tetrasodium hydrate (TPPS) in aqueous solution with the layer-by-layer (LbL) assembly of the PAH-TPPS complex and cross-linkable polyelectrolyte, PAASH60, which is a poly(acrylic acid) with 60% of its carboxylic acid grafted of thiol groups. During preassembly, TPPS was incorporated into PAH chains. After oxidative cross-linking to form disulfide bonds in between the layers, the multilayer with preassembly of the PAH-TPPS complex allowed for release and loading of TPPS in a reproducible way. The release of TPPS from the loaded film was a pH-controlled process. To compare with the conventional multilayer, the reloading capacity was greatly enhanced, which was related to the charge binding sites that formed by release of TPPS from the multilayer. Moreover, the release of TPPS could also be achieved by breaking off the cross-linking through reduction of disulfide bonds, and the release rates could be controlled by the reductive efficiency of the reductants in the media. In this way, the release of TPPS is pH/reductant dually controllable, thereby facilitating a new route to multistimuli controllable materials.  相似文献   

15.
Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The resultant capsules could keep their three-dimensional (3D) spherical shape after being dried at room temperature, dramatically different from the conventional polyelectrolyte capsules based on nonhybrid templates by layer-by-layer procedure. The instable polyelectrolyte multilayer, hybrid templates, and assembly cycles were demonstrated to be three indispensable factors responsible for the formation of this type of 3D stable capsules. The formation mechanism was also discussed in this study.  相似文献   

16.
研究了胶束增强型聚电解质(PAH/PSS和PADA/PSS)胶囊在不同溶液环境中的形貌变化,发现这种新型的胶囊具有迥异于传统聚电解质胶囊的囊壁结构;研究了二维聚电解质复合膜与模板溶解液中嵌段共聚物PS-b-PAA胶束之间的相互作用,发现胶束层可以通过静电力与聚电解质胶囊囊壁相互作用.同时,模拟模板溶出后聚电解质胶囊内部的环境条件,研究了嵌段共聚物胶束在胶囊内部的存在状态及其在透析过程中的变化规律,认为共聚物可以通过疏水作用沉积于聚电解质复合膜的内壁,并通过Ca2+离子的桥联作用稳定,也就是在聚电解质复合膜层基础上又形成了一层胶束层.即这种胶束增强型聚电解质微胶囊的囊壁是由聚电解质层和胶束层所形成的双层结构.用这种双层结构模型,我们合理解释了胶囊在高盐离子浓度下的形貌变化.  相似文献   

17.
We report a general and versatile method for the encapsulation of electrically uncharged organic substance in polymeric capsules by using a layer-by-layer (LbL) approach. Electrical charge was induced on the surface of pyrene (uncharged organic substance) with an amphiphilic surfactant (sodium dodecyl sulfate, SDS) by micellar solubilization. The SDS micellar solution of pyrene in water was then deposited on a flat substrate as well as colloidal particles with chitosan as an oppositely charged polyelectrolyte. Pyrene was used as a model drug because it displayed intrinsic fluorescence that allowed us to monitor LbL growth by fluorescence and under confocal laser scanning microscopy (CLSM). To examine the proof of concept, multilayers were coated on the planar support by the LbL method. UV-vis spectroscopy showed regular growth of each layer deposited. Thin film formation was evidenced by scanning electron microscopy. The LbL method was extended to particles where fluorescence spectroscopy revealed LbL growth and transmission electron microscopy (TEM) provided evidence of particle coating. The quantification of dye in each deposited layer further proved LbL growth. The removal of sacrificial core provided thin capsules. The capsules were characterized by TEM and CLSM. The capsules showed potential as a drug delivery system, which is suggested by the slow release of entrapped dye by concentration-dependent diffusion in isotonic saline solution. The kinetics of desorption of pyrene from this thin film was modeled by a pseudo-second-order model.  相似文献   

18.
Application of polyelectrolyte multilayer (PEM) capsules as vehicles for the controlled delivery of substances, such as drugs, genes, pesticides, cosmetics, and foodstuffs, requires a sound understanding of the permeability of the capsules. We report the results of a detailed investigation into probing capsule permeability via a molecular beacon (MB) approach. This method involves preparing MB-functionalized bimodal mesoporous silica (BMSMB) particles, encapsulating the BMSMB particles within the PEM film to be probed, and then incubating the encapsulated BMSMB particles with DNA target sequences of different lengths. Permeation of the DNA targets through the capsule shell causes the immobilized MBs to open due to hybridization of the DNA targets with the complementary loop region of the MBs, resulting in an increase in the MB fluorescence. The assay conditions (BMSMB particle concentration, MB loading within the BMS particles, DNA target concentration, DNA target size, pH, sodium chloride concentration) where the MB-DNA sensing process is effective were first examined. The permeability of DNA through poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) multilayer films, with and without a poly(ethyleneimine) (PEI) precursor layer, was then investigated. The permeation of the DNA targets decreases considerably as the thickness of the PEM film encapsulating the BMSMB particles increases. Furthermore, the presence of a PEI precursor layer gives rise to less permeable PSS/PAH multilayers. The diffusion coefficients calculated for the DNA targets through the PEM capsules range from 10-19 to 10-18 m2 s-1. This investigation demonstrates that the MB approach to measuring permeability is an important new tool for the characterization of PEM capsules and is expected to be applicable for probing the permeability of other systems, such as membranes, liposomes, and emulsions.  相似文献   

19.
The layer‐by‐layer (LbL) assembled multilayer films are widely used in the biomedical field for the controlled drug delivery. Here, multilayer films were assembled by LbL technique through alternating deposition of cationic polyurethane (PU) and poly(acrylic acid) (PAA) on glass slides. Methylene blue (MB) was used as a model drug to investigate the loading and release ability of the prepared multilayer film. The results showed that the loading rate and loading amount of MB were greatly influenced by pH value of the dye solution, and the release rate of MB was controlled both by ionic strength and pH value of immersing solution. The result also indicated that the film had a good reversibility of drug loading and release. It suggested that the PU/PAA multilayer film had potential applications in drug delivery and controlled release. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Microcapsules composed of weak polyelectrolytes modified with UV-responsive benzophenone (BP) groups were fabricated by the layer-by-layer (LbL) technique. Being exposed to UV lights, capsules shrunk in the time course of minutes at irradiation intensity of 5 mW/cm(2). The shrinkage adjusted the capsule permeability, providing a novel way to encapsulate fluorescence-labeled dextran molecules without heating. Cross-linking within the capsule shells based on hydrogen abstraction via excited benzophenone units by UV showed a reliable and swift approach to tighten and stabilize the capsule shell without losing the pH-responsive properties of the weak polyelectrolyte multilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号