首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of strontium ions on the relaxation dynamics of lithium ions in bismuthate glasses has been investigated in the frequency range of 10 Hz to 2 MHz. We have observed that the conductivity increases and the activation energy decreases with the increase of SrO content in the glass compositions with fixed Li2O content. We have also observed that the conductivity increases and the activation energy decreases when Sr2+ ions are replaced by Li+ ions, keeping the glass former content fixed. We have shown that the estimated mobile ion concentration is almost independent of temperature and SrO content in the compositions. We have further shown that a fraction of total lithium ions are mobile for all glass compositions. The results have been interpreted on the basis of the modification of the bismuthate network by the addition of SrO, which enhances the mobility of Li ions, without altering the mobile Li+ ion concentration. We have also shown that the conductivity relaxation in these glasses is independent of temperature and composition, and the nonexponential parameter is less than that for the lithium bismuthate glasses without SrO.  相似文献   

2.
The authors have reported the electrical conductivity and the conductivity relaxation in mixed alkali tellurite glasses of compositions of 70TeO2-xNa2O-(30-x)Li2O in the frequency range from 10 Hz to 2 MHz and in the temperature range from room temperature to just below the glass transition temperature. They have analyzed the relaxation data in the framework of different models. They have observed the mixed alkali effect in the dc and ac conductivities, the crossover frequency, and the conductivity relaxation frequency as well as in their respective activation energies in these glasses. They have also observed the mixed alkali effect in the decoupling index. The scaling property of the modulus spectra of these mixed alkali glasses shows that the conductivity relaxation in the mixed alkali tellurite glasses is independent of temperature but depends on the glass compositions.  相似文献   

3.
Dynamics of Li+ ions in strontium metaphosphate glasses has been studied in the frequency range of 10 Hz-2 MHz and in the temperature range of 273-573 K. The dc conductivity increases and the activation energy decreases with the replacement of strontium ions by lithium ions in the glass compositions. The ac electrical data have been studied using the modulus and conductivity formalisms. We have observed that the stretching exponent decreases and the frequency exponent increases with the replacement of strontium ions by lithium ions in these glasses. The variation of these parameters was explained in terms of ion-ion interaction. The mobile ion concentration remains nearly constant, which indicates that the mobility of the migrating ions increases when the alkaline earth ions are replaced by the alkali ions.  相似文献   

4.
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.  相似文献   

5.
The conductivity and modulus formulation in lithium modified bismuth zinc borate glasses with compositions xLi2O–(50-x) Bi2O3–10ZnO–40B2O3 has been studied in the frequency range 0.1 Hz–1.5 × 105 Hz in the temperature range 573 K–693 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the studied compositions, the dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of the experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating centre (Hf) and enthalpy of migration (Hm) have been estimated. It has been observed that number of charge carriers and ac conductivity in the lithium modified bismuth zinc borate glasses increases with increase in Li2O content. Further, the conduction mechanism in the glass sample with x = 0 may be due to overlapping large polaron tunneling, whereas, conduction mechanism in other studied glass samples more or less follows diffusion controlled relaxation model. The ac conductivity is scaled using σdc and ωH as the scaling parameter and is found that these are suitable scaling parameter for conductivity scaling. Non-Debye type relaxation is found prevalent in the studied glass system. Scaling of ac conductivity as well as electric modulus confirms the presence of different type of conduction mechanism in the glass samples with x = 0 and 5 from other studied samples. The activation energy of relaxation (ER) and dc conductivity (Edc) are almost equal, suggesting that polarons/ions have to overcome same barrier while relaxing and conducting.  相似文献   

6.
Sm3+掺杂CaO-SiO2-B2O3发光玻璃的制备、表征及性质   总被引:1,自引:0,他引:1       下载免费PDF全文
用高温固相法合制备了以CaO-SiO2-B2O3为基质,Sm3+为激活离子的发光玻璃。对Sm3+的淬灭浓度、基质中的硼硅比例、其他稀土离子的敏化作用以及基质组成等因素对玻璃发光特性的影响进行了探讨,并用红外和X-衍射分析对样品的结构进行了表征。结果表明:当Sm3+掺杂的物质的量分数为1.2%,激发波长λ = 404 nm时,玻璃体60CaO-20SiO2-20B2O3∶1.2Sm3+的发光强度为4 838 A.U.( λ = 606 nm );这种发光玻璃具有将紫外及近紫外光转换为橙红色光的特点。少量的Eu3+的掺入,对玻璃体的发光起敏化作用;玻璃体中的组分CaO可被ZnO替代。  相似文献   

7.
Ion dynamics and structure of a series of superionic AgI-doped silver tellurite glasses have been investigated in this paper. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. We have observed that the conductivity increases and the activation energy decreases with increase of AgI content and that the tellurite glasses have higher conductivity than those for phosphate or borate glasses. We have analyzed the ac electrical data in the framework of the power law and the electric modulus formalisms. We have established a correlation between the crossover rate of the mobile silver ions and the rearrangement of the structural units in tellurite glasses. The scaling of the conductivity spectra has been used to interpret the temperature and composition dependence of the relaxation dynamics. Analysis of the dielectric relaxation in the framework of modulus formalism indicates an increase in the ion-ion cooperation in the glass compositions with increasing AgI content.  相似文献   

8.
Electrical conductivity and dielectric properties have been studied for the glass system CaO---B2O3---Al2O3 in the temperature range 40–200°C. The substitution of 5% B2O3 by CaO or replacing 5% CaO by Na2O or MgO cause a decrease in the conductivity, but the decrease obtained by soda is greater than that of magnesia. The activation energies of the tested glasses were calculated. All the glasses investigated showed a dielectric constant almost independent of temperature at fixed frequency. The effect of subjecting the glass to a constant dose of gamma-rays changes both the electrical conductivity and dielectric constant. The experimental results were discussed in relation to the specific conduction mechanism in such glasses. Also the effect of varying glass composition or temperature on the mobility or migration of current carrier was considered. The possible creation of induced defects in glass on irradiation was evaluated.  相似文献   

9.
The present work aims to study the structure and variation of optical band gap, density and dc electrical conductivity in vanadium strontium borate glasses. The glass systems xV2O5.(40-x)SrO.60B2O3 and xV2O5.(60-x)B2O3.40SrO with x varying from 0 to 20 mol% were prepared by normal melt quench technique. Structural studies were made by recording IR transmission spectra. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. The position of absorption edge and hence the value of the optical band gap was found to depend on the semiconducting glass composition. The absorption in these glasses is believed to be associated with indirect transitions. The origin of Urbach energy is associated with the phonon-assisted indirect transitions. The change in both density and molar volume was discussed in terms of the structural modifications that take place in the glass matrix on addition of V2O5. dc conductivity of the glass systems is also reported. The change of conductivity and activation energy with composition indicates that the conduction process varies from ionic to polaronic one.  相似文献   

10.
Cation-cation interactions are thought to play a significant role in shaping the nonlinear compositional dependence of ionic conductivity, known as the mixed-alkali effect (MAE) in glassy solid electrolytes. For providing a structural rationale of this effect, the discrimination of various cation sites in mixed-alkali glasses is of interest. In the present study, cross-polarization (CP) experiments have been applied to glasses in the system [(Li(2)O)x(Na(2)O)(1-x)](0.3)[B(2)O(3)]0.7 to discriminate between alkali ions by virtue of different heteronuclear (7)Li-(23)Na dipole-dipole coupling strengths. Cross-polarization studies involving two types of quadrupolar nuclei (both (7)Li and (23)Na have a spin-quantum number I = 3/2) are complicated by spin state mixing under radio frequency irradiation and magic-angle spinning (MAS). Therefore careful validation and optimization protocols are reported for the model compound LiNaSO(4) prior to conducting the measurements on the glassy samples. (23)Na -->( 7)Li CP/MAS NMR spectra have been obtained on glasses containing the Na(+) ions as the dilute species. They reveal that those lithium species interacting particularly strongly with sodium ions have the same average (7)Li chemical shift as the entire lithium population; the symmetrical situation applies to the (23)Na nuclei at the sodium rich end of the composition range. On the other hand, a clear site discrimination is afforded by temperature-dependent static (23)Na -->( 7)Li CP experiments, indicating that the Li ions that are most strongly interacting with sodium ions are strongly immobilized. This finding provides the first direct experimental evidence for the proposed secondary mismatch concept invoked for explaining the strong MAE in the dilute foreign ion limit.  相似文献   

11.
The complex conductivity spectra of mixed alkali borate glasses of compositions y [xLi2O·(1−x)Na2O]·(1−y)B2O3 (with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0.1, 0.2, 0.3) in a frequency range between 10−2 Hz and 3 MHz and at temperatures ranging from 298 to 573 K have been studied. For each glass composition the conductivities show a transition from the dc values into a dispersive regime where the conductivity is found to increase continuously with frequency, tending towards a linear frequency dependence at sufficiently low temperatures. Mixed alkali effects (MAEs) in the dc conductivity and activation energy are identified and discussed. It has been for the first time found that the strength of the MAE in the logarithm of the dc conductivity linearly increases with the total alkali oxide content, y, and the reciprocal temperature, 1/T.  相似文献   

12.
In order to improve our understanding of the transport mechanisms of lithium in glasses, we have performed diffusion and ionic conductivity studies on spodumene composition (LiAlSi(2)O(6)) glasses. In diffusion couple experiments pairs of chemically identical glasses with different lithium isotopy (natural Li vs pure (7)Li) were processed at temperatures between 482 and 732 K. Profiles of lithium isotopes were measured after the diffusion runs innovatively applying femtosecond UV laser ablation combined with inductively coupled plasma mass spectrometry (LA ICP-MS). Self-diffusion coefficients of lithium in the glasses were determined by fitting the isotope profiles. During some of the diffusion experiments the electrical conductivity of the samples was intermittently measured by impedance spectrometry. Combining ionic conductivity and self-diffusivity yields a temperature-independent correlation factor of ~0.50, indicating that motions of Li ions are strongly correlated in this type of glasses. Lithium self-diffusivity in LiAlSi(2)O(6) glass was found to be very similar to that in lithium silicate glasses although Raman spectroscopy demonstrates structural differences between these glasses; that is, the aluminosilicate is completely polymerized while the lithium silicate glasses contain large fractions of nonbridging oxygen.  相似文献   

13.
Numerous studies of the ionic conductivities in oxide-doped chalcogenaide glasses have shown the anomalous result that the ionic conductivity actually increases significantly (by more than a factor of 10 in some cases) by the initial addition of an oxide phase to a pure sulfide glass. After this initial sharp increase, the conductivity then monotonically decreases with further oxide addition. While this behavior is important to the application of these glasses for Li batteries, no definitive understanding of this behavior has been elucidated. To examine this effect further and more completely, the ionic conductivities of 0.5Li(2)S + 0.5[(1 - x)GeS(2) + xGeO(2)] glasses have been measured on disc-type bulk glasses. The ionic conductivity of the 0.5Li(2)S + 0.5GeS(2) (x = 0) glass was observed to increase from 4.3 x 10(-5) (Omega cm)(-1) to 1.5 x 10(-4) (Omega cm)(-1) while the activation energy decreased to 0.358 eV from 0.385 eV by the addition of 5 mol % of GeO(2). Further addition of GeO(2) monotonically decreased the conductivity and increased the activation energy. On the basis of our previous studies of the structure of this glass system, the Anderson and Stuart model was applied to explain the decrease in the activation energy and increase in the conductivity. It is suggested that the "doorway" radius between adjacent cation sites increases slightly (from approximately 0.29(+/-0.05) A to approximately 0.40(+/-0.05) A) with the addition of oxygen to the glass and is proposed to be the major cause in decreasing the activation energy and thereby increasing the conductivity. Further addition of oxides appears to contract the glass structure (and the doorway radius) leading to an increase in the conductivity activation energy and a decrease in the conductivity.  相似文献   

14.
This paper shows recent progresses in the field of computer simulations of inorganic glasses. Molecular dynamics simulations and energy minimization methods have been applied to calculate the elastic and transport properties of alkali silicate glasses of compositions xM2O · (100 ? x)SiO2 (with x = 0, 10, 15, 20, 25, 30 % mol for M = Li, Na and K) and of a soda-lime glass with composition 15Na2O · 10CaO · 75SiO2, which has been employed to ascertain the effect of the replacement of CaO for Na2O. The excellent agreement of the computed results with the experimental data highlights the important predictive and interpretative role reached by computer simulations techniques.  相似文献   

15.
The dc and ac electrical conductivity of barium tellurite borate glass doped with Nd2O3 in the composition 50 B2O3- (20-X) BaO- 20TeO2 10 LiF or Li2O where x = 0.5, 1, 1.5 and 2 Nd2O3 were measured in the temperature range 303–648 K and in the frequency range 0.1–100 kHz. The dc and ac conductivities values increase, whereas the activation energy of conductivities decreases with increasing Nd2O3 content in the glasses containing LiF and by the replacement of LiF by Li2O the conductivity was found to decrease with addition of Nd2O3. The electrical conduction has been observed to be due to small polaron hopping at high temperatures. The frequency dependence of the ac conductivity follows the power law σAC (ω) = A ωs. The frequency exponent (s) values (in the range 0.94 and 0.33) decreases with increasing temperature. The dielectric constant and dielectric loss increased with increasing temperature and decreased with increase in frequency for all glasses studied. In LiF glasses, it is observed that, the values of ?\ and tan δ are observed to increase with the addition of Nd2O3 whereas they decrease in the glasses containing Li2O. The electrical modulus formalism has been used for studying electrical relaxation behavior in studied glasses. It is for first time that the Nd2O3 doped barium tellurite borate glasses have been investigated for dc and ac conductivities and dielectric properties over a wide range of frequency and temperature.  相似文献   

16.
Glasses with composition 15Li(2)O-15K(2)O-xBi(2)O(3)-(65 - x)-B(2)O(3)/5V(2)O(5) (3 ≤ x ≤ 15) have been prepared by the conventional melt quench technique. The electron paramagnetic resonance spectra of VO(2+) in these glasses have been recorded in the X-band frequency (≈9.3 GHz) at room temperature. The spin Hamiltonian parameters and covalency rates were evaluated. It was found that the V(4+) ions exist as vanadyl (VO(2+)) ions and are in an octahedral coordination with a tetragonal compression. The covalency rates (1 - α(2)) and (1 - γ(2)) indicate moderate covalency for the σ- and π-bonds. It was observed that the spin-Hamiltonian parameters depend slightly on the relative concentration of Bi(2)O(3). The optical properties of this glass system are studied from the optical absorption spectra recorded in the wavelength range 200-800 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The values of optical band gap for indirect allowed transitions have been determined using available theories. The direct current electrical conductivity, σ, has been measured in the temperature range 373-573 K. The conductivity decreases with the increase in Bi(2)O(3) concentration. This has been discussed in terms of the decrease in the number of mobile ions and their mobility. An attempt is made to correlate the EPR, optical, and electrical results and to find the effect of Bi(2)O(3) content on these parameters.  相似文献   

17.
Heavy metal based oxide glasses having composition xBi(2)O(3).(0.30 - x)PbO.0.70B(2)O(3) have been prepared (0.00 < or = x < or = 0.15, mol%) containing 2.0mol% of V(2)O(5) by normal melt-quenching technique. Electron paramagnetic resonance (EPR), optical spectra and dc conductivity of these glasses have been studied. Spin Hamiltonian parameters (SHP) of VO(2+) ions, dipolar hyperfine parameter, P and Fermi contact interaction parameter, K, molecular orbital coefficients (alpha(2) and gamma(2)) and optical band gap have been calculated. It is observed that in these glasses, the tetragonal nature of V(4+)O(6) complex increases with Bi(2)O(3) content. Increase in Bi(2)O(3):PbO ratio results in the contraction of 3d(xy) orbit of the unpaired electron in the vanadium ion, and the SHP are dependent on the theoretical optical basicity, Lambda(th). In present glasses, the conductivity (activation energy) first decreases (increases) with increase in mol% of Bi(2)O(3) content upto x = 0.08 and then shows a maxima (minima) at x = 0.10 and then starts decreasing (increasing) upto x < or = 0.15 with mol% of Bi(2)O(3) content.  相似文献   

18.
The electrical properties of polycrystalline lithium chloroboracite, Li4B7O12Cl, prepared by the sol-gel method were investigated in connection with their structure. Li4B7O12Cl pellets were prepared with different amounts of hydrochloric acid or ammonium chloride. The kind and amount of the chlorine source affected the formation of by-products (Li2B4O7, LiCl, a glass phase) and the morphology of the Li4B7O12Cl pellets. Thus their conductivity, which is dominated by grain boundary response owing to the high porosity of the materials, was also affected. The formation of Li2B4O7 as a by-product led to a higher activation energy and lower conductivity. In those pellets in which Li2B4O7 did form, an increase of the amount of glass phase led to higher conductivities.  相似文献   

19.
Influence of the vacancy concentration on the Li conductivity of the (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) and (Li(1-x)Na(x)(0.5)La(0.5)TiO(3) perovskite series, with 0 < or = x < 1, has been investigated by neutron diffraction (ND), impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and Monte Carlo simulations. In both series, Li(+) ions occupy unit cell faces, but Na(+) ions are located at A sites of the perovskite. From this fact, the amount of vacant A sites that participate in Li conductivity is given by the expression n(v) = [Li] + square, where square is the nominal vacancy concentration. Substitution of Li by Na decreases the amount of vacancies, reducing drastically the Li conductivity when n(v) approaches the percolation threshold of the perovskite conduction network. In disordered (Li(1-x)Na(x))(0.5)La(0.5)TiO(3) perovskites, the percolation threshold is 0.31; however, in ordered (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) perovskites, this parameter changes to 0.26. Near the percolation threshold, the amount of mobile Li species deduced by (7)Li NMR spectroscopy is lower than that derived from structural formulas but higher than deduced from dc conductivity measurements. Conductivity values have been explained by Monte Carlo simulations, which assume a random walk for Li ions in the conduction network of the perovskite. In these simulations, distribution of vacancies conforms to structural models deduced from ND experiments.  相似文献   

20.
为探究Gd2O3含量对40Fe2O3-60P2O5(mol%)基础玻璃结构的影响,采用传统熔融-冷却法制备xGd2O3-(100-x)(40Fe2O3-60P2O5)(0≤x≤12mol%)系列玻璃。利用XRD、SEM、FTIR和Raman等手段对玻璃结构进行表征,并测试了玻璃密度和维氏硬度。结果表明,在Gd2O3含量小于等于4mol%时,易形成均质玻璃,在此范围内,玻璃密度和硬度都随Gd2O3含量的增加而增加,玻璃结构以焦磷酸盐结构为主,并伴随少量的正磷酸盐和偏磷酸盐结构。在磷酸盐玻璃结构中,Gd3+作为网络修饰离子,位于玻璃网络结构间隙。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号