首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation 5 ethylenediamine (EDA)-cored poly(amidoamine) (PAMAM) dendrimers (E5, E denotes the EDA core and 5 the generation number) with different degrees of acetylation and carboxylation were synthesized and used as a model system to investigate the effect of charge and the influence of dendrimer surface modifications on electrophoretic mobility (EM) and molecular distribution. The surface-modified dendrimers were characterized by size-exclusion chromatography, 1H NMR, MALDI-TOF-MS, PAGE, and CE. The focus of our study was to determine how EM changes as a function of particle charge and molecular mass, and how the molecular distribution changes due to surface modifications. We demonstrate that partially modified dendrimers have much broader migration peaks than those of fully surface functionalized or unmodified E5 dendrimers due to variations in the substitution of individual dendrimer surfaces. EM decreased nonlinearly with increases in surface acetylation for both PAMAM acetamides and PAMAM succinamic acids, indicating a complex migration activity in CE separations that is not solely due to charge/mass ratio changes. These studies provide new insights into dendrimer properties under an electric field, as well as into the characterization of dendrimer-based materials being developed for medical applications.  相似文献   

2.
Sharma A  Mohanty DK  Desai A  Ali R 《Electrophoresis》2003,24(16):2733-2739
A simple, inexpensive, and rapid electrophoresis technique was developed for use as a routine tool for evaluating purity of polyamidoamine (PAMAM) dendrimers. A variety of factors influencing migration of generations 0-7 dendrimers on nongradient polyacrylamide gels were evaluated. The low generation dendrimers were found to be very sensitive to diffusion during or after electrophoresis. The proposed method incorporates steps that minimize diffusion, in order to obtain improved resolution and sensitivity, especially for the lower-molecular-weight dendrimers. This was accomplished by inclusion of a dendrimer fixation step with glutaraldehyde and performing the electrophoresis separation, fixation, staining, and destaining at 4 degrees C. PAMAM dendrimer separation was studied under basic and acidic conditions. Electrophoresis under acidic conditions gave increased resolution and sensitivity over separation at alkaline pH. Oligomers and trailing generations could be clearly separated and visualized under these conditions. The smallest PAMAM dendrimer, generation 0, was visible at 1.5 microg under the optimized acidic conditions. With slight modifications, this technique should be applicable to separation of other water-soluble dendrimers.  相似文献   

3.
Desai A  Shi X  Baker JR 《Electrophoresis》2008,29(2):510-515
Various generations (G1-G8) of negatively charged poly(amidoamine) (PAMAM) succinamic acid dendrimers (PAMAM-SAH) were analyzed by CE using a poly(vinyl alcohol)-coated capillary. Due to its excellent stability and osmotic flow-shielding effect, highly reproducible migration times were achieved for all generations of dendrimer (e.g., RSD for the migration times of G5 dendrimer was 0.6%). We also observed a reverse trend in migration times for the PAMAM-SAH dendrimers (i.e., higher generations migrated faster than lower generation dendrimers) compared to amine-terminated PAMAM dendrimers reported in the literature. This reversal in migration times was attributed to the difference in counterion binding around these negatively charged dendrimers. This reverse trend allowed a generational separation for lower generation (G1-G3) dendrimers. However, a sufficient resolution for the migration peaks of higher generations (G4-G5) in a mixture could not be achieved. This could be due to their nearly identical charge/mass ratio and dense molecular conformations. In addition, we show that dye-functionalized PAMAM-SAH dendrimers can also be analyzed with high reproducibility using this method.  相似文献   

4.
Dendrimer-Au nanocomposites are prepared in aqueous solutions using poly(amidoammine)dendrimers (PAMAM) (generation 2, 3, and 5) and poly(propyleneimine)dendrimers (PPI)(generation 2, 3, and 4) by wet chemical NaBH(4) method. The Au nanoparticles thus obtained are 2-4 nm in diameter for both dendrimers and no generation dependence on the particle size is observed, whereas the generations of the dendrimers are increased as stabilization of Au-nanoparticles is achieved with lower dendrimer concentrations. Studies of the reduction reaction of 4-nitrophenol using these nanocomposites show that the rate constants for the PAMAM dendrimers (generations 2 and 3) are higher than those for the PPI dendrimers (generations 2 and 3), while a distinct difference in the rate constants is not seen for the PAMAM dendrimer (generation 5) or the PPI dendrimer (generation 4). In addition, the rate constants for the reduction of 4-nitrophenol involving all the dendrimers decrease with increases in dendrimer concentrations.  相似文献   

5.
Terminal amine groups of poly(amidoamine) (PAMAM) dendrimers can be substituted with different functional groups for various applications. In this study, PAMAM derivatives with acetamide, hydroxyl, and carboxyl termini were synthesized from ethylenediamine (EDA) core generation 4 and 5 primary amine-terminated PAMAM dendrimers. The reaction products were purified with dialysis and subsequently characterized by polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis (CE), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, potentiometric titration, 1H NMR, and 13C NMR. PAGE and CE electropherograms provide data regarding the purity, charge distribution, and electrophoretic mobility of the dendrimers and their derivatives. SEC and MALDI-TOF mass spectrometry detect the average absolute molar mass and the individual mass fractions, respectively. The combination of SEC with potentiometric titration provides quantitative evidence of the degree of the functional group substitution, while NMR techniques (both 1H NMR and 13C NMR) confirmed the changes in dendrimer surface functionalization. This study provides a general example for the comprehensive characterization of surface-functionalized PAMAM dendrimer nanoparticles. The synthesized dendrimer derivatives hold promise for environmental and medical applications.  相似文献   

6.
Generation 2 to generation 5 poly(amidoamine) (PAMAM) dendrimers having different terminal functionalities were analyzed by capillary electrophoresis (CE). Polyacrylamide gel electrophoresis was also used to assess the composition of the individual generations for comparison with the CE results. Separation of PAMAMs can be accomplished by either using uncoated silica or silanized silica capillaries, although reproducibility is poor using the uncoated silica capillary. To improve run-to-run reproducibility, silanized capillary was used and various internal standards were also tested. Relative and normalized migration times of primary amine terminated PAMAM dendrimers were then determined using 2,3-diaminopyridine (2,3-DAP) as an internal standard. Using silanized capillaries and internal standards, the relative and normalized migration times are fully reproducible and comparable between runs. Apparent dimensionless electrophoretic mobilities were determined and the results were compared to theoretical calculations. It is concluded that for PAMAMs a complex separation mechanism has to be considered in CE, where the movement of the ions is due to the electric field, but the separation is rather the consequence of the adsorption/desorption equilibria on the capillary wall ("electrokinetic capillary chromatography"). The described method may be used for quality control and may serve as an effective technique to analyze polycationic PAMAM dendrimers and their derivatives with different surface modifications.  相似文献   

7.
The general properties of dendrimers and in particular their electrolytic characteristics that are relevant in electrokinetic separations, are described. In order to confirm theoretical considerations on commercial dendrimer charge and hydrodynamic radius, several capillary zone electrophoresis (CZE) experiments were performed. Electrophoretic mobilities measured at different pH values indicated a sensible increase of dendrimer hydrodynamic radius at pH values lower than 2.5. This was probably due to the Coulombic repulsion of charged amine groups of the inner dendrimer shells. The principal reasons that should address the use of dendrimers as pseudostationary phases in micellar electrokinetic chromatography (MEKC) are discussed. Moreover, a survey of different separations performed utilizing dendrimers in MEKC as well as of several future plausible uses of various classes of dendrimers is presented.  相似文献   

8.
Poly(amidoamine) (PAMAM) dendrimer-based nanodevices are of recent interest in targeted cancer therapy. Characterization of mono- and multifunctional PAMAM-based nanodevices remains a great challenge because of their molecular complexity. In this work, various mono- and multifunctional nanodevices based on PAMAM G5 (generation 5) dendrimer were characterized by UV-Vis spectrometry, (1)H NMR, size exclusion chromatography (SEC), and capillary electrophoresis (CE). CE was extensively utilized to measure the molecular heterogeneity of these PAMAM-based nanodevices. G5-FA (FA denotes folic acid) conjugates (synthesized from amine-terminated G5.NH(2) dendrimer, approach 1) with acetamide and amine termini exhibit bimodal or multi-modal distributions. In contrast, G5-FA and bifunctional G5-FA-MTX (MTX denotes methotrexate) conjugates with hydroxyl termini display a single modal distribution. Multifunctional G5.Ac(n)-FI-FA, G5.Ac(n)-FA-OH-MTX, and G5.Ac(n)-FI-FA-OH-MTX (Ac denotes acetamide; FI denotes fluorescein) nanodevices (synthesized from partially acetylated G5 dendrimer, approach 2) exhibit a monodisperse distribution. It indicates that the molecular distribution of PAMAM conjugates largely depends on the homogeneity of starting materials, the synthetic approaches, and the final functionalization steps. Hydroxylation functionalization of dendrimers masks the dispersity of the final PAMAM nanodevices in both synthetic approaches. The applied CE analysis of mono- and multifunctional PAMAM-based nanodevices provides a powerful tool to evaluate the molecular heterogeneity of complex dendrimer conjugate nanodevices for targeted cancer therapeutics.  相似文献   

9.
This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueous solutions of EDA core PAMAM dendrimers with primary amine, succinamic acid, glycidol, and acetamide terminal groups. We employ extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the structures of Cu(II) complexes with Gx-NH2 EDA core PAMAM dendrimers in aqueous solutions at pH 7.0. The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dendrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 and G5-NH2 PAMAM dendrimers at pH 7.0.  相似文献   

10.
Morphological change of gold-dendrimer nanocomposites by laser irradiation   总被引:1,自引:0,他引:1  
Gold-dendrimer nanocomposites are prepared in aqueous solutions in the presence of poly(amidoamine)dendrimers (PAMAM) (generation 3 and 5) or poly(propyleneimine)dendrimers (PPI) (generation 3 and 4) by wet chemical NaBH(4) method. Thus prepared gold-dendrimer nanocomposites are irradiated by laser at 532 nm. UV-vis absorption spectroscopy and transmission electron microscopy reveal that the gold nanoparticles grow with the laser irradiation time as well as the fluence of the laser; in particular, the gold nanoparticles prepared at lower concentrations of PAMAM dendrimer as well as lower generations of PAMAM grow significantly. On the other hand, in the case of PPI dendrimers, the gold nanoparticles hardly grow by irradiation. In addition, dynamic light-scattering measurements show that the laser irradiation markedly promotes the association of the gold-PAMAM G3 dendrimer nanocomposites compared to that of the gold-PAMAM G5 dendrimer nanocomposites, while the sizes of association for the gold-PPI G3, G4 dendrimer nanocomposites hardly change by laser irradiation.  相似文献   

11.
Dendrimer-metal (silver, platinum, and palladium) nanocomposites are prepared in aqueous solutions containing poly(amidoamine) (PAMAM) dendrimers with surface amino groups (generations 3, 4, and 5) or poly(propyleneimine) (PPI) dendrimers with surface amino groups (generations 2, 3, and 4). The particle sizes of the metal nanoparticles obtained are almost independent of the generation as well as the concentration of the dendrimer for both the PAMAM and the PPI dendrimers; the average sizes of silver, platinum, and palladium nanoparticles are 5.6-7.5, 1.2-1.6, and 1.6-2.0 nm, respectively. It is suggested that the dendrimer-metal nanocomposites are formed by adsorbing the dendrimers on the metal nanoparticles. Studies of the reduction reaction of 4-nitrophenol by these nanocomposites show that the rate constants are very similar between PAMAM and PPI dendrimer-silver nanocomposites, whereas the rate constants for the PPI dendrimer-platinum and -palladium nanocomposites are greater than those for the corresponding PAMAM dendrimer nanocomposites. In addition, it is found that the rate constants for the reduction of 4-nitrophenol involving all the dendrimer-metal nanocomposites decrease with an increase in the dendrimer concentrations, and the catalytic activity of dendrimer-palladium nanocomposites is highest.  相似文献   

12.
Dendrimers, a relatively new group of highly branched three dimensional polymers, are intensively investigated to use them in biomedical and physicochemical sciences. Their specific architecture gives them the ability to interact with many different types of molecules. In our studies the interaction between PAMAM succinamic acid dendrimers generation 4 (PAMAM-SAH G4) and human serum albumin (HSA) was examined. Experiments showed that a single molecule of a HSA can bind approximately 6 particles of dendrimers. The fluorescence studies demonstrated that dendrimers lead to a decrease in protein fluorescence but changes in fluorescence anisotropy were not observed. Alterations in the spectrum of circular dichroism indicated changes in the secondary protein structure. The results clearly show that this generation of dendrimers possesses a strong ability to interact with human serum albumin.  相似文献   

13.
The electrochemistry of a series of dendrimers was examined at the interface between two immiscible electrolyte solutions (ITIES), enabling study of non-redox-active dendrimers. Different generations of poly(propylenimine) (DAB-AM-n) and poly(amidoamine) (PAMAM) dendrimers were studied. In their protonated states, the dendrimers were transferred across the ITIES, with the electrochemical behavior observed depending on the dendrimer family, the generation number, and the experimental pH. The electrochemistry of the lower generations studied was characterized by well-defined peaks for both dendrimer families and with small peak-peak separations in the case of the PAMAM family. The voltammetry of the higher generations was more complex, showing distorted voltammograms and instability of the interface. The charges of the transferring dendrimers were calculated by convolution of the voltammetric data and were similar to the theoretical charges for DAB-AM-n. For PAMAM, only the lowest generation exhibited reversible behavior, with higher generations having irreversible behavior. Using cyclic voltammetry, low micromolar concentrations of the dendrimers were detected. The results show that electrochemistry at the ITIES can be a useful method for characterization of ionizable dendrimers and that voltammetry can be a simple method for detection of low concentrations of these multicharged species.  相似文献   

14.
We report the synthesis and characterization of a group of carboxyl-functionalized poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) that were used for the stabilization of superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (NPs). Folic acid (FA) molecules were conjugated onto the dendrimer surfaces in an attempt to achieve specific targeted imaging of tumor cells that overexpress FA receptors using dendrimer-stabilized Fe(3)O(4) NPs. Fe(3)O(4) NPs were synthesized using controlled co-precipitation of Fe(ii) and Fe(iii) ions and the formed dendrimer-stabilized Fe(3)O(4) NPs were characterized using transmission electron microscopy (TEM) and polyacrylamide gel electrophoresis (PAGE). The intracellular uptake of dendrimer-stabilized Fe(3)O(4) NPs was tested in vitro using KB cells (a human epithelial carcinoma cell line) that overexpress FA receptors. It appears that carboxyl-terminated PAMAM dendrimer-stabilized Fe(3)O(4) NPs can be uptaken by KB cells regardless of the repelling force between the negatively charged cells and the negatively charged particles. In the presence of a large amount of carboxyl terminal groups on the dendrimer surface, the receptor-mediated endocytosis of Fe(3)O(4) NPs stabilized by FA-modified dendrimers was not facilitated. It implies that the surface charge of dendrimer-stabilized magnetic iron oxide NPs in biological medium is an important factor influencing their biological performance.  相似文献   

15.
Control of particle-particle spacing is a key determinant of optical, electronic, and magnetic properties of nanocomposite materials. We have used poly(amidoamine) (PAMAM) dendrimers to assemble carboxylic acid-functionalized mixed monolayer protected clusters (MMPCs) through acid/base chemistry between the particle and dendrimer. Small angle X-ray scattering was then used to establish average inter-MMPC distances. Five generations of PAMAM dendrimer (0, 1, 2, 4, 6) were investigated, with a monotonic increase in interparticle spacing from 4.1 to 6.1 nm observed with increasing generation.  相似文献   

16.
Nanoscale protein pores modified with PAMAM dendrimers   总被引:1,自引:0,他引:1  
We describe nanoscale protein pores modified with a single hyperbranched dendrimer molecule inside the channel lumen. Sulfhydryl-reactive polyamido amine (PAMAM) dendrimers of generations 2, 3 and 5 were synthesized, chemically characterized, and reacted with engineered cysteine residues in the transmembrane pore alpha-hemolysin. Successful coupling was monitored using an electrophoretic mobility shift assay. The results indicate that G2 and G3 but not G5 dendrimers permeated through the 2.9 nm cis entrance to couple inside the pore. The defined molecular weight cutoff for the passage of hyperbranched PAMAM polymers is in contrast to the less restricted accessibility of flexible linear poly(ethylene glycol) polymers of comparable hydrodynamic volume. Their higher compactness makes sulfhydryl-reactive PAMAM dendrimers promising research reagents to probe the structure of porous membrane proteins with wide internal diameters. The conductance properties of PAMAM-modified proteins pores were characterized with single-channel current recordings. A G3 dendrimer molecule in the channel lumen reduced the ionic current by 45%, indicating that the hyperbranched and positively charged polymer blocked the passage of ions through the pore. In line with expectations, a smaller and less dense G2 dendrimer led to a less pronounced current reduction of 25%. Comparisons to recordings of PEG-modified pores revealed striking dissimilarities, suggesting that differences in the structural dynamics of flexible linear polymers vs compact dendrimers can be observed at the single-molecule level. Current recordings also revealed that dendrimers functioned as ion-selectivity filters and molecular sieves for the controlled passage of molecules. The alteration of pore properties with charged and hyperbranched dendrimers is a new approach and might be extended to inorganic nanopores with applications in sensing and separation technology.  相似文献   

17.
Interaction forces between two gold surfaces with adsorbed poly(amidoamine) (PAMAM) dendrimers (generations G3.0 and G5.0) have been investigated using colloidal probe atomic force microscopy (AFM). In the absence of dendrimers or at their low concentrations, an attractive force derived from the van der Waals interaction was observed. On the other hand, this attractive interaction changed to repulsion with increasing dendrimer concentration. The origin of the repulsion can be attributed to either an electric double layer interaction or a steric effect of the adsorbed dendrimers, depending on the concentration of dendrimer. The steric hindrance was also influenced by the generation of the dendrimer; the force-detectable distance in the presence of PAMAM G5.0 dendrimer was slightly longer than that in the presence of G3.0 dendrimer. In order to estimate the occupied area of each dendrimer adsorbed on gold, quartz crystal microbalance (QCM) measurement was also carried out.  相似文献   

18.
Low generational(G0–G2,G for generation) polyamidoamine(PAMAM) dendrimers were investigated as enhancers to improve the aqueous solubility of folic acid at pH 11 and pH 5.In these two cases,the solubility of folic acid increases with both the dendrimer concentration and generation.However,the solubilization mechanism is different.The electrostatic interaction between the primary amines of dendrimers and the ionized carboxylic groups of folic acid dominates the dissolution process at pH 11 while the increase of the solubility of folic acid at pH 5 is attributed to the hydrophobic encapsulation inside the dendrimer molecules.In addition,for comparison ethylenediamine was used as a small molecule control to examine the ‘‘dendritic effect' in the dendrimer-related solubilization process.Interestingly,PAMAM dendrimers exhibit,at pH 5,a significant superiority over ethylenediamine in enhancing solubility,whereas this ‘‘dendritic effect' cannot be observed under the basic condition.  相似文献   

19.
合成了1到5代外端修饰有偶氮苯基团的聚酰胺-胺(PAMAM)树枝状分子.H-NMR、FTIR和元素分析等表明得到了目标产物,外端接枝率在70%~90%.结构分析表明经修饰的PAMAM分子在3代和4代之间存在一个结构转变.UV-Vis和H-NMR分析结构显示,在中性条件下,Gn-azo表现出类似于小分子偶氮苯基团的光响应行为.而在酸性条件下,偶氮苯基团的顺反异构转化率较质子化前低.包裹及释放实验表明,虽然G4-azo包裹水杨酸分子的能力弱于G4PAMAM,但它对于客体小分子具有缓释作用,光照使偶氮苯基团发生由反式到顺式的异构转化之后,缓释效应更明显.  相似文献   

20.
Formation of RNA/dendrimer complexes between various RNA molecules and PAMAM dendrimers was studied using atomic force microscopy. Our results demonstrate that effective construction of stable nanoscale and uniform RNA/dendrimer complexes depends critically on the size of the RNA molecule, the dendrimer generation and the charge ratio between the dendrimer and the RNA. Larger RNA molecules, higher generations of dendrimers and larger dendrimer-to-RNA charge ratios lead to the formation of stable, uniform nanoscale RNA/dendrimer complexes. These findings provide new insights in developing dendrimer systems for RNA delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号