首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w(0) ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 microeV over the momentum transfer (Q) range of 0.36-2.53 A(-1) on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w(0)=1 and 2.5) translational diffusion rate is too slow to be detected, while for w(0)=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w(0) and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function F(S)(Q,t) for water hydrogens. Comparison of the time Fourier transform of this F(S)(Q,t) with the QENS dynamic structure factor S(Q,omega), shows good agreement between the model and experiment. Separate intermediate scattering functions F(S) (R)(Q,t) and F(S) (CM)(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of F(S) (R)(Q,t) and F(S) (CM)(Q,t) is a good approximation to the total F(S)(Q,t). We find that the decay of F(S) (CM)(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.  相似文献   

2.
The coherent dynamics of a typical fragile glass former, meta-toluidine, was investigated at the molecular level using quasielastic neutron scattering, with time-of-flight and neutron spin echo spectrometers. It is well known that the static structure factor of meta-toluidine shows a prepeak originating from clustering of the molecules through hydrogen bonding between the amine groups. The dynamics of meta-toluidine was measured for several values of the wavevector transfer Q, which is equivalent to an inverse length scale, in a range encompassing the prepeak and the structure factor peak. Data were collected in the temperature range corresponding to the liquid and supercooled states, down to the glass transition. At least two dynamical processes were identified. This paper focuses on the slowest relaxation process in the system, the α-relaxation, which was found to scale with the macroscopic shear viscosity at all the investigated Q values. No evidence of "de Gennes" narrowing associated with the prepeak was observed, in contrast with what happens at the Q value corresponding to the interparticle distance. Moreover, using partially deuterated samples, the dynamics of the clusters was found to be correlated to the single-particle dynamics of the meta-toluidine molecules.  相似文献   

3.
We have studied the influence of plasticization on the microscopic dynamics of a glass-forming polymer. For this purpose we studied polyvinylchloride (PVC) with and without the commercially used plasticizer dioctylphthalate (DOP). We used dielectric spectroscopy and inelastic neutron scattering employing the neutron spin echo (NSE) technique. For both kinds of spectra the alpha relaxation could be consistently described by a model involving a distribution of individual relaxations of the Kohlrausch type. In contrast to earlier studies it turned out that an asymmetric distribution is necessary to fit the data at the lower temperatures investigated here. The shape parameters of the distribution (width, skewness) for PVC and PVC/DOP turned out to coincide when the characteristic relaxation times were the same. This means that the plasticizer only induces a remapping of the temperature dependence of the alpha relaxation. Comparison of NSE spectra S(Q,t)S(Q) at different scattering vectors Q gave the result that the slowing down at the structure factor peak Q(max) is surprisingly small for PVC while it is in the normal range for PVC/DOP.  相似文献   

4.
A quasielastic neutron scattering experiment has revealed the dynamics of surface water in a high surface area zirconium oxide in the temperature range of 300-360 K. The characteristic times of the rotational (picoseconds) and translational (tens of picoseconds) components of diffusion motion are well separated. The rotational correlation time shows an Arrhenius-type behavior with an activation energy of 4.48 kJ/mol, which is lower compared to bulk water. The rotational diffusion at room temperature is slower by about a factor of 2 compared to bulk water, whereas the translational diffusion slows down by a factor of 40. In contrast to bulk water, the translational correlation time exhibits an Arrhenius-type temperature dependence with an activation energy of 11.38 kJ/mol. Comparison of different models for jump diffusion processes suggests that water molecules perform two-dimensional jumps at a well-defined, almost temperature-independent distance of 4.21-4.32 A. Such a large jump distance indicates a low molecular density of the layer of diffusing molecules. We argue that undissociated water molecules on an average form two hydrations layers on top of the surface layer of hydroxyl groups, and all the layers have similar molecular density. Quasielastic neutron scattering experiment assesses the dynamics of the outermost hydration layer, whereas slower motion of the water molecules in the inner hydration layer contributes to the elastic signal.  相似文献   

5.
The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.  相似文献   

6.
The molecular dynamics of glucose dissolved in heavy water have been investigated at 280 K by the technique of quasielastic neutron scattering. The scattering was described by a dynamic structure factor that accounts for decoupled diffusive jumps and free rotational motions of the glucose molecules. With increasing glucose concentration, the diffusion constant decreases by a factor five and the time between jumps increases considerably. Our observations validate theoretical predictions concerning the impact of concentration on the environment of a glucose molecule and the formation of cages made by neighboring glucose molecules at higher concentrations.  相似文献   

7.
The microscopic dynamics of the planar, multilamellar lipid bilayer system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been investigated using quasielastic neutron scattering. The DMPC was hydrated to a level corresponding to approximately nine water molecules per lipid molecule. Selective deuteration has been used to separately extract the dynamics of the water, the acyl chains, and the polar head groups from the strong incoherent scattering of the remaining hydrogen atoms. Furthermore, the motions parallel and perpendicular to the bilayers were probed by using two different sample orientations relative to the incident neutron beam. For both sample orientations, the results showed an onset of water motions at 260 K on the experimental time scale of about 100 ps. From lack of wave-vector dependence of the onset temperature for water motions, it is evident that the observed water dynamics is of mainly rotational character at such low temperatures. At 290 K, i.e., slightly below the gel-to-liquid transition around 295 K, the nature of the water dynamics had changed to a more translational character, well described by a jump-diffusion model. On the limited experimental time and length (about 10 A) scales, this jump-diffusion process was isotropic, despite the very anisotropic system. The acyl chains exhibited a weak onset of anharmonic motions already at 120 K, probably due to conformational changes (trans-gauche and/or syn-anti) in the plane of the lipid bilayers. Other anharmonic motions were not observed on the experimental time scale until temperature had been reached above the gel-to-liquid transition around 295 K, where the acyl chains start to show more substantial motions.  相似文献   

8.
Quasielastic neutron scattering was used to study the hydration reaction of tricalcium and dicalcium silicate mixtures by following the fixation of hydrogen into the reaction products, and by applying hydration models to the data. The reaction kinetics were well-described by an Avrami-derived model for the nucleation and growth regime during early hydration times and a diffusion-limited model for later periods. This study showed that the hydration reaction is not a simple linear combination of the reactions for the individual components. Compressive strength tests correlated with the neutron scattering data, suggesting that the details of the interaction affect the microstructure and therefore the strength of the product. Results suggest that favorable reaction mechanics provide optimal strength when an 80-95% tricalcium silicate and 20-5% dicalcium silicate mixture is used.  相似文献   

9.
10.
We have investigated the dynamics of water confined in a molecular sieve, with a cylindrical pore diameter of 10 A, by means of quasielastic neutron scattering (QENS). Both the incoherent and coherent intermediate scattering functions I(Q,t) were determined by time-of-flight QENS and the neutron spin-echo technique, respectively. The results show that I(Q,t) is considerably more stretched in time with a slightly larger average relaxation time in the case of coherent scattering. From the Q dependence of I(Q,t) it is clear that the observed dynamics is almost of an ordinary translational nature. A comparison with previous dielectric measurements suggests a possible merging of the alpha and beta relaxations of the confined water at T=185 K, although the alpha relaxation cannot be directly observed at lower temperatures due to the severe confinement. The present results are discussed in relation to previous results for water confined in a Na-vermiculite clay, where the average relaxation time from spin-echo measurements was found to be slower than in the present system (particularly at low temperatures).  相似文献   

11.
A systematic time-of-flight quasielastic neutron scattering (TOF-QENS) study on diffusion of n-alkanes in a melt is presented for the first time. As another example of a medium-chain molecule, coenzyme Q(10) is investigated in the same way. The data were evaluated both in the frequency and in the time domain. TOF-QENS data can be satisfactorily described by different models, and it turned out that the determined diffusion coefficients are largely independent of the applied model. The derived diffusion coefficients are compared with values measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR). With increasing chain length, an increasing difference between the TOF-QENS diffusion coefficient and the PFG-NMR diffusion coefficient is observed. This discrepancy in the diffusion coefficients is most likely due to a change of the diffusion mechanism on a nanometer length scale for molecules of medium-chain length.  相似文献   

12.
One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 A? as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 A? over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ~220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.  相似文献   

13.
By using small-angle neutron scattering (SANS) and neutron spin echo (NSE), we have quantitatively investigated the static inhomogeneity in poly (N-isopropyl acrylamide) gel (PNIPA) in microscopic length scales of 0.015相似文献   

14.
We report incoherent quasielastic neutron scattering experiments on the thermotropic liquid crystal 4-n-octyl-4'-cyanobiphenyl. The combination of time-of-flight and backscattering data allows analysis of the intermediate scattering function over about three decades of relaxation times. Translational diffusion and uniaxial molecular rotations are clearly identified as the major relaxation processes in, respectively, the nanosecond and picosecond time scales.  相似文献   

15.
The authors describe small-angle neutron scattering measurements of the screening length ζ in polyacrylamide-water gels. Although these are inhomogeneous systems, the screening length is clearly observable and is in good numerical agreement with the relation E = 3kT/4πζ3, where E is the longitudinal elastic modulus of the gel obtained from measurements of the intensity of qu-asielastically scattered light. Static light scattering observations reveal a larger-scale (ca. 30 nm) superstructure in the gel.  相似文献   

16.
Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion for bulk water. This reduction of the water diffusion is discussed in terms of the interaction of the water with the calcium silicate gel and the ions present in the pore water.  相似文献   

17.
Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk diffusion requires significant activation. The fraction of mobile hydrogen is found to be small for both undoped and doped Na3AlH6, even at 350 K, and improved hydrogen diffusion as a result of bulk-substituted titanium is found to be unlikely. We also propose that previously detected low-temperature point defect motion in sodium alanate could result from vacancy-mediated sodium diffusion.  相似文献   

18.
Cellulose - Structural changes of cellulose microfibrils and microfibril bundles in unmodified spruce cell wall due to drying in air were investigated using time-resolved small-angle neutron...  相似文献   

19.
The dynamics of three glass-forming polymers, PVC, PB and PI, has been investigated by time of flight (TOF) neutron scattering in a time scale from 10−13s to 1011s looking for the crossover from microscopic dynamics to segmental dynamics (α relaxation). A new analysis procedure has been applied to TOF data in order to separate harmonic vibrational and relaxational contributions. Due to the involved assumptions, this procedure can be considered only as a first approximation adequate for the case of “fragile” systems (in the Angell's meaning) like the polymers here investigated. The behaviour obtained was the same for the three polymers studied. The intermediate scattering function corresponding to the relaxational dynamics, Io(Q,t), shows two different dynamical regimes separated by a crossover time tc (≈ 2 ps), which hardly depends on Q (momentum transfer) and temperature. At t < t<c, Io(Q,t) displays a Debye-like behaviour (exponential decay). The activation energy found for the relaxation time corresponding to this regime was in the range of 2–5 Kcal/mol, i.e., in the range of the activation energy for local conformational transitions in isolated macromolecular chains. At t > tc and, at least at high temperature, Io(Q,t) shows a Kohlrausch-Williams-Watts (KWW) behaviour similar to the obtained one by means of backscattering neutron techniques in the mesoscopic time scale (10−11s to 10−7s) and dielectric measurements in the macroscopic time scale (10−7s to 10°s). This KWW regime can be associated to the segmental dynamics involved in the α relaxation. A phenomenological interpretation is outlined. In this framework, the Debye-like regime is interpreted to be the segmental dynamics free from intermolecular hindrances. Therefore, tc should be the time at which intermolecular interactions start to play a significant role concerning to the segmental dynamics. This interpretation recalls some of the basic ideas of the so called “Coupling-Model” proposed a long time ago by Ngai.  相似文献   

20.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号