共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-independent quantum scattering calculations have been carried out on the Walden inversion S(N)2 reaction Cl(-)+CH(3)Cl(')(v(1),v(2),v(3))-->ClCH(3)(v(1) ('),v(2) ('),v(3) ('))+Cl('-). The two C-Cl stretching modes (quantum numbers v(3) and v(3) (')) and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v(1) and v(1) ('), and inversion bending vibration, v(2) and v(2) (')) are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed. The scattering problem is formulated in hyperspherical coordinates using the exact Hamiltonian and exploiting the full symmetry of the problem. Converged state-selected reaction probabilities and product distributions have been calculated up to 6100 cm(-1) above the vibrational ground state of CH(3)Cl, i.e., up to initial vibrational excitation (2,0,0). In order to extract all scattering resonances, the energetic grid was chosen to be very fine, partly down to a resolution of 10(-12) cm(-1). Up to 2500 cm(-1) translational energy, initial excitation of the umbrella bending vibration, (0,1,0), is more efficient for reaction than exciting the C-Cl stretching mode, (0,0,1). The combined excitation of both vibrations results in a synergic effect, i.e., a considerably higher reaction probability than expected from the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm(-1) translational energy. Product distributions show that the umbrella mode is strongly coupled to the C-Cl stretching mode and cannot be treated as a spectator mode. The reaction probability rises almost linearly with increasing initial excitation of the umbrella bending mode. The effect with respect to the C-Cl stretch is five times larger for more than two quanta in this mode, and in agreement with previous work saturation is found. Exciting the high-frequency C-H stretching mode, (1,0,0), yields a large increase for small energies [more than two orders of magnitude larger than (0,0,0)], while for translational energies higher than 2000 cm(-1), it becomes a pure spectator mode. For combined initial excitations including the symmetric C-H stretch, the spectator character of the latter is even more pronounced. However, up to more than 1500 cm(-1) translational energy, the C-H vibration does not behave adiabatically during the course of reaction, because only 20% of the initial energy is found in the same mode of the product molecule. The distribution of resonance widths and peak heights is discussed, and it is found that individual resonances pertinent to intermediate complexes Cl(-)...CH(3)Cl show product distributions independent of the initial vibrational state of the reactant molecule. The relatively high reactivity, of resonance states with respect to excitation of any mode, found in previous work is confirmed in the present calculations. However, reactivity of intermediate states and reactivity with respect to initial vibrational excitation have to be distinguished. There is a strong mixing between the vibrational states reflected in numerous avoided crossings of the hyperspherical adiabatic curves. 相似文献
2.
Schmatz S 《The Journal of chemical physics》2005,122(23):234306
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S(N)2) reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations. 相似文献
3.
Mayneris J Saracibar A Goldfield EM Gonzalez M García E Gray SK 《The journal of physical chemistry. A》2006,110(16):5542-5548
The complex-forming CH + H2 --> CH2 + H reaction is studied employing a recently developed global potential energy function. The reaction probability in the total angular momentum J = 0 limit is estimated with a four-atom quantum wave packet method and compared with classical trajectory and statistical theory results. The formation of complexes from different reactant internal states is also determined with wave packet calculations. While there is no barrier to reaction along the minimum energy path, we find that there are angular constraints to complex formation. Trajectory-based estimates of the low-pressure rate constants are made and compared with experimental results. We find that zero-point energy violation in the trajectories is a particularly severe problem for this reaction. 相似文献
4.
D. J. Levandier M. Mengel R. Pursel J. McCombie G. Scoles 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1988,10(2-3):337-346
A molecular beam of medium-large argon clusters containing CH3F has been characterized by means of photoevaporation infrared laser spectroscopy at several stagnation pressures and CH3F concentrations. Bolometric detection and line tunable, isotopically substituted CO2 lasers have been used. Two spectral features have been assigned to the CH3F monomer and the dependence of their shifts and widths on stagnation pressure has been measured. Concentration studies have allowed us to identify the features produced by the CH3F dimer and to recognize tentatively the effect of the higher polymers. CH3F has also been deposited on the clusters surface by means of the previously introduced pick-up technique. In contrast to the results obtained with the SF6/Ar combination, no peaks could be associated with surface adsorbed species. The CH3F/Ar clusters thus characterized have been made to interact with a side flux of HCl and the ensuing complex-forming reaction has been studied. Both the decrease in the CH3F monomer absorption intensity, and the extra absorption due to the newly formed (CH3F-HCl) complexes, have been used to monitor this dynamic process, which has been found to proceed to completion in a time shorter than 100 μs even for the large clusters (approx. 103 argon atoms) produced by our source at the largest viable stagnation pressure. 相似文献
5.
Numerical integrations of a hypothetical radical chain reaction model have been performed for the pyrolysis of CH2ClCH3 which is known to be molecular. Analyses of the modelling results have led to a better understanding of the participation (or nonparticipation) of “dead” radicals in the self-inhibition of the radical chain reaction. Attention is focused on the fact that apparently slow elementary reactions still may have to be taken into account in a pyrolysis mechanism when they produce “dead” radicals which can accumulate. © John Wiley & Sons, Inc. 相似文献
6.
The CH2Cl + CH3 (1) and CHCl2 + CH3 (2) cross-radical reactions were studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 301-800 K and bath gas (helium) density (6-12) x 10(16) atom cm(-3). The observed rate constant of reaction 1 can be represented by an Arrhenius expression k1 = 3.93 x 10(-11) exp(91 K/T) cm3 molecule(-1) s(-1) (+/-25%) or as an average temperature-independent value of k1= (4.8 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The rate constant of reaction 2 can be expressed as k2= 1.66 x 10(-11) exp(359 K/T) cm3 molecule(-1) s(-1) (+/-25%). C2H4 and C2H3Cl were detected as the primary products of reactions 1 and 2, respectively. The experimental values of the rate constant are in reasonable agreement with the prediction based on the "geometric mean rule." A separate experimental attempt to determine the rate constants of the high-temperature CH2Cl + O2 (10) and CHCl2 + O2 (11) reaction resulted in an upper limit of 1.2 x 10(-16) cm(3) molecule(-1) s(-1) for k10 and k11 at 800 K. 相似文献
7.
Venkatesh Vasudevan Robert D. Cook Ronald K. Hanson Craig T. Bowman David M. Golden 《国际化学动力学杂志》2008,40(8):488-495
The reaction between methyl and hydroxyl radicals has been studied in reflected shock wave experiments using narrow‐linewidth OH laser absorption. OH radicals were generated by the rapid thermal decomposition of tert‐butyl hydroperoxide. Two different species were used as CH3 radical precursors, azomethane and methyl iodide. The overall rate coefficient of the CH3 + OH reaction was determined in the temperature range 1081–1426 K under conditions of chemical isolation. The experimental data are in good agreement with a recent theoretical study of the reaction. The decomposition of methanol to methyl and OH radicals was also investigated behind reflected shock waves. The current measurements are in good agreement with a recent experimental study and a master equation simulation. © 2008 Wiley Periodicals, Inc. 40: 488–495, 2008 相似文献
8.
We study the reaction Cl + CH(4)--> HCl + CH(3) using a 2-D potential energy surface obtained by fitting a double Morse analytical function to high level (CCSD(T)/cc-pVTZ//MP2/cc-pVTZ)ab initio data. Dynamics simulations are performed in hyperspherical coordinates with the close-coupled equations being solved using R-matrix propagation. Quantum contributions from spectator modes are included via a harmonic zero-point correction to the ab initio data prior to fitting the potential. This is the first time this method has been applied to a heavy-light-heavy reaction and the first time it has been used to study differential cross sections. We find thermal rate constants and state-to-state differential cross sections which are in good agreement with experimental data. We discuss the applicability of our method to the study of kinetic isotope effects (KIEs), which we derive for the CH(4)/CD(4) substitution. The calculated KIE compares favourably with experiment. Finally, we discuss the sensitivity of the results of dynamics simulations on the accuracy of the fitted potential. 相似文献
9.
Ab initio rate constants from hyperspherical quantum scattering: application to H + CH4 --> H2 + CH3
A general and practical procedure is described for calculating rate constants for chemical reactions using a minimal number of ab initio calculations and quantum-dynamical computations. The method exploits a smooth interpolating functional developed in the hyperspherical representation. This functional is built from two Morse functions and depends on a relatively small number of parameters with respect to conventional functionals developed to date. Thus only a small number of ab initio points needs to be computed. The method is applied to the H + CH4 --> H2 + CH3 reaction. The quantum scattering calculations are performed treating explicitly the bonds being broken and formed. All the degrees of freedom except the breaking and forming bonds are optimized ab initio and harmonic vibrational frequencies and zero-point energies for them are calculated at the MP2(full) level with a cc-pVTZ basis set. Single point energies are calculated at a higher level of theory with the same basis set, namely CCSD(T, full). We report state-to-state cross sections and thermal rate constants for the title reaction and make comparisons with previous results. The calculated rate constants are in good agreement with experiments. 相似文献
10.
The hydrogen or deuterium atom abstraction reactions between Cl((2)P(3/2)) and methane, or its deuterated analogues CD(4) and CH(2)D(2), have been studied at mean collision energies around 0.34 eV. The experiments were performed in a coexpansion of molecular chlorine and methane in helium, with the atomic Cl reactants generated by polarized laser photodissociation of Cl(2) at 308 nm. The Cl-atom reactants and the methyl radical products were detected using (2+1) resonantly enhanced multiphoton ionization, coupled with velocity-map ion imaging. Analysis of the ion images reveals that in single-beam experiments of this type, careful consideration must be given to the spread of reagent velocities and collision energies. Using the reactions of Cl with CH(4), CD(4), and CH(2)D(2), as examples, it is shown that the data can be fitted well if the reagent motion is correctly described, and the angular scattering distributions can be obtained with confidence. New evidence is also provided that the CD(3) radicals from the Cl+CD(4) reaction possess significant rotational alignment under the conditions of the present study. The results are compared with previous experimental and theoretical works, where these are available. 相似文献
11.
The existence of recently observed scattering resonances in the hydrogen abstraction reaction F + CH4 --> FH + CH3 was investigated using the reduced dimensionality rotating line umbrella (RLU) quantum scattering model and employing an analytical potential energy surface, PES-2006, recently developed by our group. The calculations were performed in hyperspherical coordinates. The wells found in the hyperspherical adiabats, the oscillatory pattern in the cumulative and state-to-state reaction probabilities, the forward/backward predominance in the differential cross section at a collision energy of 1.8 kcal mol(-1), and the dramatic change of the scattering angle with energy are related to scattering resonances, and they are assigned to a quasi-bound complex on the vibrationally adiabatic ground-state potential. 相似文献
12.
Potential energy surfaces for the reactions of CH4+ with H2, HD, and D2 have been calculated using high-level ab initio methods, including coupled cluster theory, complete active space self-consistent field, and multireference configuration interaction. The energies are extrapolated to the complete basis set limit using the basis sets aug-cc-pVXZ (X = D, T, Q, 5, 6). The CH4+ + H2 reaction produces CH5+ and H exclusively. Three types of reaction mechanisms have been found, namely, complex-forming abstraction, scrambling, and S(N)2 displacement. The abstraction occurs via a very minor barrier and it is dominant. The other two mechanisms are negligible because of the significant barriers involved. Quantum phase space theory and variational transition state theory are used to calculate the rate coefficients as a function of temperatures in the range of 5-1000 K. The theoretical rate coefficients are compared with the available experimental data and the discrepancy is discussed. The significance of isotope effect, tunneling effect, and nuclear spin effect is investigated. The title reaction is predicted to be slightly exothermic with DeltaHr = -12.7 +/- 5.2 kJ/mol at 0 K. 相似文献
13.
14.
A theoretical study is reported of the Cl+CH3OH-->CH2OH+HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies, and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. M?ller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol. 相似文献
15.
A hybrid real space quantum mechanical/molecular mechanical (RS-QM/MM) method has been applied to an ionic S(N)2 reaction (OH- + CH3Cl --> CH3OH + Cl-) in water solution to investigate dynamic solvation effects of the supercritical water (SCW) on the reaction. It has been demonstrated that the approaching process of OH- to methyl group is prevented by water molecules in the ambient water (AW), while the reaction takes place easily in the gas phase. Almost the same solvation effect on the dynamics of OH- is observed in the SCW, though the bulk density of water is substantially reduced compared with that of the AW. It has been shown that the solvation of the SCW around the OH anion is locally identical to that of the AW due to the strong ion-dipole interactions between OH- and water molecules. At the transition state, the QM/MM simulations have revealed that the excess electron is quite flexible, and the charge volume, as well as the fractional charges on atoms, vary seriously depending on the instantaneous solvent configurations. However, it has been found that the solvation energy in the SCW can be qualitatively related to the HOMO volume of the system by Born's equation. 相似文献
16.
Based on an FTIR-product study of the photolysis of mixtures containing Br2? CH3CHO and Br2? CH3CHO? HCHO in 700 torr of N2, the rate constant for the reaction Br + CH3CHO → HBr + CH3CO was determined to be 3.7 × 10?12 cm3 molecule?1 s?1. In addition, the selective photochemical generation of Br at λ > 400 nm in mixtures containing Br2? CH3CHO? 14NO2 (or 15NO2)? O2 was shown to serve as a quantitative preparation method for the corresponding nitrogen-isotope labeled CH3C(O)OONO2 (PAN). From the dark-decay rates of 15N-labeled PAN in large excess 14NO2, the rate constant for the unimolecular reaction CH3C(O)OO15NO2 → CH3C(O)OO + 15NO2 was measured to be 3.3 (±0.2) × 10?4 s?1 at 297 ± 0.5 K. 相似文献
17.
Li Wang Jianxiang Zhao Hongqing He Jinglai Zhang 《International journal of quantum chemistry》2013,113(7):997-1002
Dual‐level direct dynamics method is used to study the kinetic properties of the hydrogen abstraction reactions of CH3CHBr + HBr → CH3CH2Br + Br (R1) and CH3CBr2 + HBr → CH3CHBr2 + Br (R2). Optimized geometries and frequencies of all the stationary points and extra points along the minimum‐energy path are obtained at the MPW1K/6‐311+G(d,p), MPW1K/ma‐TZVP, and BMK/6‐311+G(d,p) levels. Two complexes with energies less than that of the reactants are located in the entrance of each reaction at the MPW1K/6‐311+G(d,p) and MPW1K/ma‐TZVP levels, respectively. The energy profiles are further refined with the interpolated single‐point energies method at the G2M(RCC5)//MPW1K/6‐311+G(d,p) level of theory. By the improved canonical variational transition‐state theory with the small‐curvature tunneling correction (SCT), the rate constants are evaluated over a wide temperature range of 200–2000 K. Our calculations have shown that the radical reactivity decreases from CH3CHBr to CH3CBr2. Finally, the total rate constants are fitted by two modified Arrhenius expression. © 2012 Wiley Periodicals, Inc. 相似文献
18.
Five hydrogen abstraction reactions, CH4 + R CH3 + HR have been studied usingab initio SCF and CI methods. R was successively chosen as H, CH3, NH2, OH and F. Geometries were fully optimized at SCF level and energies were computed at CI level for products, reactants and transition states. Quadratic hypersurfaces were fitted in the neighborhood of the most important points of the potential energy hypersurfaces and vibrational analysis were performed thereupon. Wigner's and Christov's approximations were used to obtain an idea of the importance of tunneling of H atoms through the reaction barrier, and this effect was shown to be non-negligible. Finally, rate constant calculation were carried out at different temperatures.Chercheur Qualifié au Fonds National Belge de la Recherche Scientifique. 相似文献
19.
Herman W. Zappey Steen Ingemann Nico M. M. Nibbering 《Journal of the American Society for Mass Spectrometry》1992,3(5):515-517
The methoxy cation, CH30+, formed by collision-induced charge reversal of methoxr anions with a kinetic energy of 8 keY, has been differentiated from the isomenric CH2OH+ ion by performing low kinetic energy ion-molecule reactions In the radiofrequency-only quadrupole of a reverse-geometry double-focusing quadrupole hybrid mass spectrometer. The methoxy cation reacts with CH3SH, CH3?CH=CH2, (CH3)2O, and CH3CH2Cl by electron transfer, whereas the CH2OH+ ion reacts by proton transfer with these substrates 相似文献
20.
The mechanisms and kinetics studies of the OH radical with alkyl hydroperoxides CH(3)OOH and CH(3)CH(2)OOH reactions have been carried out theoretically. The geometries and frequencies of all the stationary points are calculated at the UBHandHLYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies method at the MC-QCISD level of theory. For two reactions, five H-abstraction channels are found and five products (CH(3)OO, CH(2)OOH, CH(3)CH(2)OO, CH(2)CH(2)OOH, and CH(3)CHOOH) are produced during the above processes. The rate constants for the CH(3)OOH/CH(3)CH(2)OOH + OH reactions are corrected by canonical variational transition state theory within 250-1500 K, and the small-curvature tunneling is included. The total rate constants are evaluated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained. 相似文献