首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A density-functional approach and canonical Monte Carlo simulations are presented for describing the ionic microscopic structure around the DNA molecule immersed in mixed-size counterion solutions. In the density-functional approach, the hard-sphere contribution to the Helmholtz energy functional is obtained from the modified fundamental measure theory [Y.-X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)], and the electrostatic contribution is evaluated through a quadratic functional Taylor expansion. The new theory is suitable to the systems containing ions of arbitrary sizes and valences. In the established canonical Monte Carlo simulation, an iterative self-consistent method is used to evaluate the long-range energy, and another iterative algorithm is adopted to obtain desired bulk ionic concentrations. The ion distributions from the density-functional theory (DFT) are in good agreement with those from the corresponding Monte Carlo (MC) simulations. It is found that the ratio of the bulk concentrations of two species of counterions (cations) makes significant contribution to the ion distributions in the vicinity of DNA. Comparisons with the electrostatic potential profiles from the MC simulations show that the accuracy of the DFT becomes low when a small divalent cation exists. Both the DFT and MC simulation results illustrate that the electrostatic potential at the surface of DNA increases as the anion diameter or the total cation concentration is increased and decreases as the diameter of one cation species is increased. The calculation of electrostatic potential using real ion diameters shows that the accuracy of DFT predictions for divalent ions is also acceptable.  相似文献   

2.
3.
The critical properties of hexafluorobenzene were measured, and compared with the most reliable values reported in literature. The vapour pressure was determined from 226°C to the critical point and correlated by an equation of state.  相似文献   

4.
Interfacial properties of colloid-polymer mixtures are examined within an effective one-component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective potentials, and a free energy functional is used that treats colloid excluded volume correlations within Rosenfeld's fundamental measure theory, and depletion-induced attraction within first-order perturbation theory. This functional allows a consistent treatment of both ideal and interacting polymers. The theory is applied to surface properties near a hard wall, to the depletion interaction between two walls, and to the fluid-fluid interface of demixed colloid-polymer mixtures. The results of the present theory compare well with predictions of a fully two-component representation of mixtures of colloids and ideal polymers (the Asakura-Oosawa model) and allow a systematic investigation of the effects of polymer-polymer interactions on interfacial properties. In particular, the wall surface tension is found to be significantly larger for interacting than for ideal polymers, whereas the opposite trend is predicted for the fluid-fluid interfacial tension.  相似文献   

5.
We present phase diagrams of a model bidisperse ferrocolloid consisting of a binary mixture of dipolar hard spheres (DHSs) under the influence of an external magnetic field. The dipole moments of the particles are chosen proportional to the particle volume to mimic real ferrocolloids, and we focus on dipole-dominated systems where isotropic attractive interactions are absent. Our results are based on density-functional theory in the modified mean-field (MMF) approximation. For one-component DHS fluids in external fields, and for corresponding mixtures dominated by one of the components, MMF theory predicts the tricritical point of the transition between an isotropic gas and a ferromagnetic liquid occurring at zero field to be changed into a critical point separating two magnetically ordered phases of different density. The corresponding critical temperature displays a nonmonotonic dependence on the field strength. Completely different behavior is found for the critical temperature related to the demixing phase transitions appearing in strongly asymmetric mixtures [G. M. Range and S. H. L. Klapp, Phys. Rev. E 70, 061407 (2004)]. For such systems, we find a monotonic decrease of the demixing critical temperature with increasing field. The field strength dependence of the critical temperature can therefore be tuned between nonmonotonic and monotonic behaviors just by changing the composition of the mixture--e.g., by adjusting the chemical potentials. This allows us to efficiently control the influence of external magnetic fields on the phase behavior over a large temperature interval.  相似文献   

6.
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high.  相似文献   

7.
Fe(III) hydrolysis in aqueous solution has been investigated using density-functional methods (DFT). All possible structures arising from different tautomers and multiplicities have been calculated. The solvation energy has been estimated using the UAHF-PCM method. The hydrolysis free energies have been estimated and compared with the available experimental data. The different hydrolysis species have distinct geometries and electronic structures. We have shown that improvement of theory level in calculating the electronic energy does not necessarily improve the estimated free energies in aqueous solution since the UAHF-PCM is a simple method that neglects specific interactions with the solvent. Therefore, it is important to have the correct balance between theory level used in the electronic calculation and the UAHF-PCM. The PBE/TZVP/UAHF-PCM method has been found to describe correctly the hydrolysis energies of Fe(III), deviating about 3.0 kcal mol(-1) from experimental values.  相似文献   

8.
It is shown that it is possible to formulate a sum-over-states (SOS) response theory for static perturbations based directly on the Kohn-Sham formulation of density functional theory (DFT). The SOS-DFT response theory affords expressions analogous to those obtained from the classical Raleigh-Schrodinger perturbation theory, where use is made of a complete set of ground and excited state energies and wave functions. The static SOS-DFT response theory is applicable for both real and imaginary perturbations. The theory is established by making use of time-dependent DFT taken to zero frequency with the use of the adiabatic approximation. In the SOS-DFT formulation the expression for electric (e.g., polarization) and magnetic (e.g., magnetization) response properties are symmetrical.  相似文献   

9.
Russian Chemical Bulletin - The properties of metastable and equilibrium drops that occur in the vapor phase and differ in the size and position of the dividing surface are compared. Using an...  相似文献   

10.
The temperature dependences of the rate of oxidation of acetone vapors by oxygen on oxide surface catalysts: V2O5, Co3O4., MoO3 and TiO2 (rutile), and the industrial catalyst VKSh were determined. A series of the catalytic activity of the above surface catalysts was established. The relationship between the catalytic properties of the oxides in the oxidation of acetone and their redox and acid-base characteristics was analyzed. The catalytic activity of the oxides in the oxidation reaction of acetone and methanol were compared.Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 24, No. 1, pp. 114–117, January–February, 1988.  相似文献   

11.
12.
We present the results of an extended computational study of the electric and magnetic properties connected to Cotton-Mouton birefringences, on the trifluoro- and trichloroborides in the gas phase. The electric dipole polarizabilities, magnetizabilities, quadrupole moments, and higher-order hypersusceptibilities--expressed as quadratic and cubic frequency-dependent response functions--are computed within Hartree-Fock, density-functional, and coupled-cluster response theories employing singly and doubly augmented correlation-consistent basis sets and London orbitals in the magnetic property calculations. The results, which illustrate the capability of time-dependent density-functional theory for electron-rich systems, are compared with available experimental data. Revised values of both experimentally derived quadrupole moment of BF3, 2.72 +/- 0.15 a.u., and magnetizability anisotropy of BCl3, -0.45 +/- 0.09 a.u., both obtained in birefringence experiments that neglect the effects of higher-order hypersusceptibilities, are presented. In the theoretical limit the traceless quadrupole moments of BF3 and BCl3 are determined to be 3.00 +/- 0.01 and 0.71 +/- 0.01 a.u., respectively.  相似文献   

13.
Density-functional theory studies on microscopic processes of gaas growth   总被引:1,自引:0,他引:1  
Results for the elementary processes of MBE growth of GaAs on the frequently used GaAs(001) substrate are reviewed. We propose a bottom-up approach, where a growth model is constructed from the results of density functional theory (DFT) calculations. The implications of such a model can be tested against the information from STM images. First, the stable surface reconstructions are reviewed. Under the most commonly used conditions for MBE growth, the arsenic-rich β2 (2 × 4) reconstruction, which contains As dimers as basic building blocks, is the most stable. Next, the adsorption and diffusion of Ga atoms and As molecules on this surface is described. The DFT calculations support the picture that adsorbed Ga atoms are quite stable against re-evaporation. Thus, their mobility determines the homogeneity of the growing layer. Incorporation of Ga atoms proceeds by splitting the As dimers. We propose a model where growth proceeds in two stages: filling of trenches in the β2 (2 × 4) reconstruction, followed by nucleation of islands on the surface regions where the trenches are filled. We demonstrate how clusters of incorporated Ga atoms act as nuclei for the process of trench filling. Concerning island formation, the role of step formation energies and attachment probabilities of mobile adatoms at steps is discussed. Knowledge of these is crucial for an understanding of island shapes. Ongoing research is aiming at understanding of the microscopic mechanisms giving rise to the transition between the step-flow mode and the island-nucleation mode of growth.  相似文献   

14.
19F NMR spectra and 13C satellites of hexafluorobenzene partially oriented in nematic liquid crystals have been recorded and analysed. Spin-spin couplings, corrected for vibrations, are used to investigate the anisotropic contribution of the indirect 19F19F and 13C19F couplings. The chemical shielding anisotropy is investigated using nematic and smectic solutions and compared with results from solid-state NMR.  相似文献   

15.
Using density functional calculations, we investigate the geometries, electronic structures and magnetic properties of hexagonal BN sheets with 3d transition metal (TM) and nonmetal atoms embedded in three types of vacancies: V(B), V(N), and V(B+N). We show that some embedded configurations, except TM atoms in V(N) vacancy, are stable in BN sheets and yield interesting phenomena. For instance, the band gaps and magnetic moments of BN sheets can be tuned depending on the embedded dopant species and vacancy type. In particular, embedment such as Cr in V(B+N), Co in V(B), and Ni in V(B) leads to half-metallic BN sheets interesting for spin filter applications. From the investigation of Mn-chain (C(Mn)) embedments, a regular 1D structure can be formed in BN sheets as an electron waveguide, a metal nanometre wire with a single atom thickness.  相似文献   

16.
The complex linear response function, which can be employed for calculations of second-order molecular properties in regions of strong absorption, is here extended to encompass the mixed electric-dipole-magnetic-dipole polarizability. The mixed electric-dipole-magnetic-dipole polarizability determines the optical rotation and, when absorption is taken into account, the full anomalous optical rotatory dispersion (ORD) spectra of chiral molecules can be calculated using first-principle quantum-chemical methods. Gauge-origin independence of the results is ensured through the use of London atomic orbitals. To illustrate the importance of taking the absorption process properly into account, we here apply this methodology to the study of the anomalous ORD of hydrogen peroxide, 3R-methylcyclohexanone, 4R-1,1-dimethyl-[3]-(1,2)-ferrocenophan-2-on, and the D(2) isomer of the C(84) fullerene.  相似文献   

17.
18.
Excess thermodynamic functions (free energies, enthalpies and entropies of mixing) have been obtained from measurements of vapour pressures, together with excess volumes of mixing, for mixtures of hexafluorobenzene with carbon tetrachloride and with perfluoromethyl-cyclohexane (tetradecafluoromethylcyclohexane). Deviations from thermodynamic ideality are large, although the systems are completely miscible. Critical temperatures of the mixtures are also reported. A correlation between the data, anticipated from a simple model for mixtures of asymmetric molecules, does not obtain.  相似文献   

19.
20.
For the first time, results of high-precision measurements of the viscosity coefficient of triethylamine vapor at low densities are reported. The relative measurements with an all-quartz oscillating-disk viscometer were carried out along seven isochores at densities from 0.002 to 0.009 mol m−3 in the temperature range between 298 and 498 K. The uncertainty is estimated to be ±±0.2% at ambient temperature, increasing up to ±±0.3% at higher temperatures. First isothermal values were recalculated from the original experimental data and then evaluated with a first-order expansion for the viscosity, in terms of density. In addition, viscosity values of the saturated vapor were determined at low temperatures. The results are utilized to model the viscosity coefficient of triethylamine vapor at moderately low densities. A so-called individual correlation on the basis of the extended theorem of corresponding states was employed to describe the zero-density viscosity coefficient, whereas the Rainwater–Friend theory was used to represent the initial density dependence expressed as second viscosity virial coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号