首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Polystyrene (PSt) microspheres with diameter of 375 nm to be used as the seeds for seeded emulsion polymerization were prepared via emulsion polymerization using potassium persulfate (KPS) as initiator in ethanol-water mixed solvents. Emulsifier-free seeded emulsion copolymerization of styrene (St) with acrylonitrile (AN) was carried out in the presence of poly(ethylene glycol) monomethoxymonomethacrylate (PEGm) macromonomer as reactive stabilizer and 2,2'-azobisisobutyronitrile (AIBN) as initiator to obtain submicron-sized PEGm graft poly(styrene-coacrylonitrile) (PEGm-g-PSAN) composite particles with unique morphology. Scanning electron microscopy (SEM) indicated that St and AN together contributed to forming the unusual morphology. The concentration of St and AN, total monomer concentration, initiator type and the monomer adding method remarkably affected the morphology of the composite polymer particles.  相似文献   

2.
In order to improve its dispersibility, superfine alumina (Al2O3) was encapsulated with poly (methyl methacrylate) (PMMA) by in situ emulsion polymerization. It was found that only when the concentration of sodium dodecyl sulfate (SDS) was much higher than its critical micelle concentration, could PMMA/Al2O3 composite particles with high percentage of grafting (PG) be prepared. The same results were obtained between the experimental and stoichiometric amounts of tris (dodecylbenzenesulfonate) isopropoxide (NDZ), indicating that single-molecule-layer adsorption had taken place between NDZ and Al2O3. Analysis using FTIR. TEM and XPS showed that PMMA/Al2O3 composite particles with core-shell structure had been successfully synthesized by in sire emulsion polymerization. Compared to Al2O3, thermal stability and dispersibility of the composite particles showed marked improvement.  相似文献   

3.
In order to improve its dispersibility, superfine alumina (A1203) was encapsulated with poly(methyl methacrylate) (PMMA) by in situ emulsion polymerization. It was found that only when the concentration of sodium dodecyl sulfate (SDS) was much higher than its critical micelle concentration, could PMMA/Al2O3 composite particles with high percentage of grafting (PG) be prepared. The same results were obtained between the experimental and stoichiometric amounts of tris(dodecylbenzenesulfonate) isopropoxide (NDZ), indicating that single-molecule-layer adsorption had taken place between NDZ and Al2O3. Analysis using FTIR, TEM and XPS showed that PMMA/Al2O3 composite particles with core-shell structure had been successfully synthesized by in situ emulsion polymerization. Compared to Al2O3, thermal stability and dispersibility of the composite particles showed marked improvement.  相似文献   

4.
Emulsion polymerization of styrene was carried out using dendrimer DAB-dendr-(NH2)64 as seed. The size and size distribution of the emulsion particles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effects o.f emulsion polymerization conditions on the preparation of emulsion particle were investigated. It has been found that the nanosized dendrimer/polystyrene polymer emulsion particles obtained were in the range of 26~64nm in diameter, and were monodisperse; the size and size distribution of emulsion particles were influenced by the contents of dendrimer DAB-dendr-(NH2)64, emulsifier and initiator, as well as the pH value.  相似文献   

5.
Rheological properties of polymer blends with sphere-in-sphere morphology   总被引:1,自引:0,他引:1  
The linear viscoelastic behavior of polystyrene (PS) and poly(methylmethacrylate) (PMMA) blends with PS as the matrix and amounts of PMMA in the range 10–30 wt% was investigated. Transmission electron microscopy (TEM) revealed a complex morphology which was characterized by the existence of composite particles; the PMMA particles which are enclosed in the PS matrix themselves carry PS inclusions. In order to explain the G* data of these blends a model is presented which consists of a Palierne model for the composite particles and a Palierne model for the whole blend, taking into account composite and neat particles. Simulations show the principal relevance of the assumptions made. Moreover, it is shown that the measurements agree well with the model for the whole measured frequency region and that the fit parameters, the size of the composite particles and the concentration and size of interior particles are in reasonable agreement with data available from TEM. Received: 1 November 1998 Accepted: 5 April 1999  相似文献   

6.
Inorganic/organic poly(methylmethacrylate-acrylic acid-divinylbenzene) iron oxide Janus magnetic nanoparticles(P(MMA-AA-DVB)/Fe3O4) with strong magnetic domains and unique surface functionalities were prepared using a solvothermal process.The P(MMA-AA-DVB) nanoparticles were prepared via soapfree emulsion polymerization and used as a precursor for preparing Janus nanoparticles.The morphology and magnetic properties of the magnetic Janus nanoparticles formed were characterized using a laser particle size analyzer,transmission electron microscopy,Fourier transform infrared spectroscopy,vibrating sample magnetometry,and thermogravimetric analysis.The synthesized P(MMA-AA-DVB)/Fe3O4 magnetic Janus nanoparticles were characterized by a Janus structure and possessed a stable asymmetric morphology after being dually functionalized.The particle size,magnetic content,and magnetic domain of the P(MMA-AA-DVB)/Fe3O4 magnetic Janus nanoparticles were 200 nm,40%,and 25 emu/g,respectively.The formation mechanism of the Janus nanoparticles was also investigated,and the results revealed that the reduction of Fe3+ ions and growth of Fe3O4 took place on the surface of the P(MMA-AA-DVB) polymeric precursor particles.The size of the Janus particles could be controlled by narrowing the size distribution of the P(MMA-AA-DVB) precursor nanoparticles.  相似文献   

7.
Dispersion of multi-walled carbon nanotubes in poly(p-phenylene) composite exposed to toluene was experimentally investigated. 3 mg of multi-walled carbon nanotubes with nominal size of 20 nm was compounded with 30 mg of poly(p-phenylene) with the presence of terpineol as binding initiator. To investigate an optimal condition for homogenizing all constituents, ultrasonication with an output power of 750W was employed with compounding time of 3, 10, 20 and 30 min. With FTIR analyses, it could be confirmed that homogeneous composite of multi-walled carbon nanotubes and poly(p-phenylene) could be prepared. SEM analyses were also conducted to examine the dispersion of multi-walled carbon nanotubes in the polymer matrix. Then intrinsic electrical resistance of the composites after being exposed to toluene was also investigated. It was found that the composite film prepared with ultrasonication for 20 min could provide sufficiently sensitive response with respect to varied concentration of toluene.  相似文献   

8.
Superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (Pst-DVB-GMA) microparticles were prepared via a modified suspension polymerization process. A magnetic fluid was first prepared by a chemical co-precipitation method. Then magnetic microparticles were produced by mixing the monomers and the magnetic fluid with water in the presence of a stabilizer poly(vinyl pyrrolidone) (PVP) to form a suspension, and finally benzoyl peroxide was added to initiate the co-polymerization. The morphology and magnetic properties of the microparticles were examined by TEM and VSM. The spherically shaped microparticles, with a size range of 4 to 7 pm, showed distinct superparamagnetic characteristics. XRD was used to investigate the structure of the magnetite particles dispersed in the polymer matrix. The microparticles with epoxy groups on their surface can be applied directly to the seoaration of biomolecules.  相似文献   

9.
The phenomenon of adsorption of solid particles at fluid interfaces to stabilize emulsions or foams have been known for more than a century. Today, particle-stabilized emulsions, often referred to as Pickering emulsions, are receiving growing attention as they are encountered in oil recovery and have long been used in personal care products and food industry. Over the past 10 years the focus of the Pickering emulsion has also increasingly shifted to biomedical applications with thanks to novel syntheses of a wide range of biocompatible particle stabilizers. Here, a brief overview of the development of biocompatible particles is given for Pickering emulsion stabilization, including alginate, poly(lactic-co-glycolic acid) (PLGA), and protein-based particles. The materials prepared by templating from emulsion stabilized with biocompatible particles include colloidal capsules and hierarchically porous materials. It is hoped that the understanding gained from the recent intense activity in the field will enable more researchers to modify existing materials and design new formulations, which would be beneficial for exploring more biological applications.  相似文献   

10.
In this paper,the dispersion and nucleation behavior of ultrafine particles of silica and layered silicate (LS) in poly(ethylene terephthalate) (PET) matrix are investigated and characterized by Transmission Electron Microscopy (TEM),Wide Angle X-ray Diffraction (WAXD),Dynamic Scanning Calorimetry (DSC),and Atomic Force Microscopy (AFM).The solid precursors based on silica and LS are suggested originally for preparing nanocomposites with good dispersion morphology.Results show that the initial sub-micron (1000-500nm) LS particles are exfoliated or dispersed into nanometer-scale particles (30-70nm) during their polymerization with PET monomers.These dispersed nanoparticles form an ordered morphology in their nucleation and growth during annealing nanocomposites.DSC patterns reveal that the double melting peaks of annealed PET-LS nanocomposites disappear,while they have shrunken in PET-silica ones.These findings strongly demonstrate that the dispersed nanoparticles accelerate the crystallization of PET.The dispersed LS particles have higher percolation and nucleation performance than those of silica.The homogeneous distribution morphology of ultrafine particles is easily obtained by controlling the load of their corresponding precursors.Such a dispersion obviously improves PET properties in that its heat distortion temperature (HDT)increases from 76℃ to 103℃, and crystallization increases 2-4 times more than that of PET.Especially,the nanocomposite films keep themselves transparent when particle load is within 2 wt.% though there are 3 wt.% or so of agglomerated particles in the nanocomposites.  相似文献   

11.
This paper considers an improvement of the emulsion models to take into account concentrated emulsions with no coalescence but with significant interaction between particles. For this purpose, a term proportional to the volume fraction of material in excess to the percolation threshold is added to the dynamic modulus. Its usefulness was tested to model the viscoelastic behavior in oscillatory shear flow of concentrated and diluted blends of a thermoplastic polystyrene with an epoxy-amine thermoset. These blends experience phase separation upon polymerization and the volume fraction of separated phase varies continuously with time. At low volume fraction of dispersed phase, the behavior could be described with a simple emulsion model that takes into account the plastisizing, dilution, and phase separation mechanisms. However, for concentration in excess to the percolation threshold, the modification can cope with a larger increase in the modulus related to the mechanical percolation of the dispersed particles.  相似文献   

12.
A direct numerical simulation technique based on two‐way coupling is presented to study a particle‐laden, decaying isotropic turbulent flow. Physical characteristics of turbulence modulation because of the mono‐dispersed (i.e., particles with single Stokes number) and poly‐dispersed particles (i.e., particles with more than one Stokes number) were investigated. A scale dependent effective viscosity that summarizes the aspects of the interaction between the velocity field and particles is defined in the study. Particles of Stokes number (St) 3.2,6.4 and 12.8 were used in performing the simulations. Poly‐dispersed particles were acquired by mixing particles of two different Stokes numbers at a time. As a whole, decay of turbulence because of the poly‐dispersed particles is observed to be larger than that of the decay of turbulence because of the mono‐dispersed particles. Simulations of poly‐dispersed particle indicate nonlinear characteristics in the modification of the temporal evolution of turbulence energy and dissipation. The scale dependent effective viscosity, which correlates with the energy spectrum plot, indicates that the decay of turbulence is mostly observed at the intermediate scales of turbulence. The effective viscosity for the simulations of the poly‐dispersed particles was calculated to be higher than that of the simulations of the mono‐dispersed particles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
To prepare uniform polystyrene particles with ten microns of diameter, a parallel scaling-up strategy for the capillary-assembled stepwise microchannel was developed, which created uniform droplets with high-throughput and formed a large amount of emulsion templates for the polymerization of styrene and cross-linker. The microchannel droplet generator was robust for the flow rate deviation of the continuous phase in the jetting flow, and droplet generation frequency up to 2.8 × 104 Hz was achieved with only four parallel droplet generators, which were much more efficient than the parallelly scaled microfluidic devices working in dripping flow. 32–52 μm average diameter droplets with 4.5%–8.4% diameter variation coefficients were successfully prepared from the microchannel device fabricated by low-cost 3D-print method, and the droplets were subsequently turned to solid particles via a two-step polymerization in the platform. The polystyrene particles were further reduced to 16.9–23.5 μm with 5.0%–8.6% diameter variation coefficients due to the accompanying emulsion polymerization, and the working capacity of the platform reached hundred milligrams of particles per hour.  相似文献   

14.
以改性氧化石墨烯(MGO)/聚苯乙烯为复合壁材,硬脂酸丁酯为润滑芯材,通过种子微悬浮聚合法制备了改性氧化石墨烯微胶囊润滑材料(MGO-Micro LMs),以MGO-Micro LMs为润滑添加剂,经本体浇铸成型制备MGOMicro LMs/PS复合材料.采用IR和SEM表征了化学组成和微观形貌,以微机控制电子万能试验拉伸机和高速往复摩擦磨损试验仪评价了断裂行为和摩擦学性能,以Mico-XAM非接触式三维表面轮廓仪观察磨痕表面形貌并计算磨损率.结果表明:MGO-Micro LMs在聚苯乙烯基体中具有良好的分散性和相容性,同时对聚苯乙烯基体材料具有增韧效果;MGO-Micro LMs可以提高聚苯乙烯基体材料摩擦磨损性能,具有润滑和减摩作用,MGO-Micro LMs润滑机理为边界润滑.  相似文献   

15.
以无皂乳液聚合方法制备的聚苯乙烯(PS)微球为内核,硝酸铈为铈源,六亚甲基四胺为沉淀剂,采用液相工艺制备了PS/CeO2复合颗粒.利用XRD、TEM、SAED、FESEM、EDAX等手段,对所制备样品的物相结构、形貌、粒径大小和元素成分组成进行表征.将所制备的复合磨料用于硅晶片热氧化层的化学机械抛光,用AFM观察抛光表面的微观形貌,并测量表面粗糙度.结果表明,所制备的PS/CeO2复合颗粒具有核-壳结构,呈近似球形,粒径在250~300nm,PS内核表面被粒径在5~10nm的CeO2纳米颗粒均匀包覆,壳层的厚度为10~20nm.抛光后的硅热氧化层表面在5μm×5μm范围内粗糙度Ra值和RMS值分别为0.188nm和0.238nm,抛光速率达到461.1nm/min.  相似文献   

16.
The synthesis of hard-core/soft-shell calcium carbonate (CaCO3)/poly(methyl methacrylate) (PMMA) hybrid structured nanoparticles (〈100nm) by an atomized microemulsion polymerization process is reported. The polymer chains were anchored onto the surface of nano-CaCO3 through use of a cou- pling agent, triethoxyvinyl silane (TEVS). Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n-pentanol were used as the initiator, surfactant and cosurfactant, respectively. The polymeriza- tion mechanism of the core-shell latex particles is discussed. The encapsulation of nano-CaCO3 by PMMA was confirmed using a transmission electron microscope (TEM). The grafting percentage of the core-shell particles was investigated by thermogravimetric analysis (TGA). The nano-CaCO3/PMMA core-shell par- ticles were characterized by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results revealed the existence of a strong interaction at the interface of the nano-CaCO3 particle and the PMMA, which implies that the polymer chains were successfully grafted onto the surface of the nano-CaCO3 particles through the link of the coupling agent, In addition, the TGA and DSC results indicated an enhancement of the thermal stability of the core-shell materials compared with that of the pure nano-PMMA, The nano-CaCO3/PMMA particles were blended into a polypropylene (PP) matrix by melt processing. It can also be observed using scanning electron microscopy (SEM) that the PMMA chains grafted onto the CaCO3 nanoparticles interfere with the aggregation of CaCO3 in the polymer matrix (PP matrix) and thus improve the compatibility of the CaCO3 nanoparticles with the PP matrix.  相似文献   

17.
An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (Al) particles were then encapsulated in inorganic–organic hybrid films that were prepared by hydrolysis and condensation of PMBK and tetraethyl orthosilicate (TEOS) on the surface of Al pigments. Characterization results showed that PMBK and TEOS could simultaneously hydrolyze and condense with hydroxyl groups on the surface of the Al particles to form composite Al particles coated with inorganic–organic hybrid films. Compared with raw Al particles, the corrosion resistance and adhesive properties of paint films containing the composite Al particles were improved greatly, while the glossiness of the paint films decreased slightly, from 48.6° to 47.0°. In alkaline media (pH 11), the volume of evolved H2 of composite Al particles was only 3.5 mL, whereas that of raw Al was 83.5 mL. The glossiness of paint films containing composite Al particles decreased by 1.66% after immersion in alkaline media for 24 h, whereas that of raw Al decreased by 14.82%. Peel-off tests of the paint films showed that the composite particles moved slightly away from the paint films. In contrast, the raw Al particles were seriously desquamated, suggesting encapsulation of hybrid films can greatly improve the adhesive properties of Al particles in paint films.  相似文献   

18.
The design of new composites based on a polypropylene (PP) matrix and filler fly ash particles leads to changes in processability, morphology, and physical properties of the raw thermoplastic. The new materials should combine the processability of common thermoplastics with improved toughness. We have designed more environmentally friendly composites filled with residual ash. To improve composite toughness (one of the principal drawbacks of these PP/ash composites), a new olefin block copolymer (OBC) was included in the filler–matrix interface, and to modify the ash surface, an organosilane was used to enhance interface strength. The present work analyzes the influence of composite formulation on the morphological, mechanical, and rheological properties of the new composites. In terms of rheological properties, modulus and viscosity were enhanced as a function of the amount of filler added. The incorporation of a silane coupling agent into composites brought about beneficial changes in morphology and rheology, related with improved dispersion of ash particles and increased filler–matrix interactions. Finally, when OBC was added to the filler–matrix interface, composite morphology was more homogenous. The best rheological and mechanical properties were obtained when the ratio of OBC to fly ash particles was 1:2.  相似文献   

19.
A novel method of fabricating composite mosaic membranes was studied on the basis of interracial polymerization (IP) by coating a thin selective layer onto the surface of a micro-porous hollow-fiber membrane, in which, 2,5-diaminobenzene sulfonic acid was used as one monomer of the IP reaction, and a mixture of trimesoyl chloride (TMCI) and 4-(chloromethyl) benzoyl chloride as the other monomer. Through the IP reaction a thin selective layer with negatively charged groups could be first formed on the polyethersulfone (PES) support membrane. Then trimethylamine solution was introduced to modify the IP layer through a quaternization reaction. Thus the selective layer of this composite membrane contained both negatively charged and positively charged groups to perform the mosaic functionality. Characterization of the composite mosaic membranes was carried out through permeation experiments using different inorganic salts and dyes. The experimental results showed that the membranes could permeate both mono- and bi-valent inorganic salts, but reject larger organic molecules. Such a mosaic membrane is potentially useful for the separation of salts from water-soluble organics, especially in dye and textile industries.  相似文献   

20.
The present paper is devoted to the study of the mechanical behavior of an ethylene propylene diene monomer (EPDM) rubber reinforced by polypropylene (PP) particles, revealed as compressible. The hyperlastic behavior of this blend has been characterized under cyclic uni-axial tensile tests. The experimental results show a significant effect of the fraction of (PP) particles (5%, 10%, 25% and 30% by weight) on the macroscopic behavior of the composite. In order to model this behavior, we first develop and implement a micromechanically-based nonlinear model for hyperelastic composites. The approach is based on the second order homogenization method proposed by Ponte Castaneda and Tiberio (2000) and for which suitable energy densities are adopted for the matrix and the inclusions phases, both assumed as compressible. We then proceed to the model verification by comparison with Finite Element simulations on a unit cell. Finally, we propose an extension of the model in order to take into account damage due to voids growth phenomena. The comparison of the multiscale damage model predictions with the experimental data obtained on the EPDM/PP composite indicates a very good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号