首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the commercial bitumen extraction operation, dynamic and static interaction forces between bitumen drops in water determine the likelihood of desirable bitumen coalescence at different process stages. These dynamic and static forces were measured using colloidal particle scattering and hydrodynamic force balance techniques, respectively. In the former technique, dynamic interactions are studied through droplet-droplet collision trajectory measurement. In the latter technique, the static attractive forces between droplets are determined when a doublet is separated with a known and adjustable hydrodynamic force. The dynamic force measurement implies the presence of rigid chains on bitumen surfaces. The mean chain lengths for deasphalted bitumen at pH 7, whole bitumen at pH 7, and whole bitumen at pH 8.5 are 50, 78, and 41 nm, respectively. However, the static force measurement indicates much shorter mean chain lengths (<9 nm) in these three bitumen systems. Shorter chain length indicates weaker repulsive force. This finding of a much weaker repulsion between bitumen droplets under static conditions has important implications on the commercial bitumen extraction operation.  相似文献   

2.
Shear-induced coalescence of emulsified oil drops   总被引:1,自引:0,他引:1  
Crude oil droplets, when suspended in water, possess negative surface charges which give rise to double-layer repulsive forces between the drops. According to conventional DLVO theory, the magnitude of this repulsion (based on the measured zeta potential) is more than sufficient to prevent coalescence of the droplets. Indeed, when two such droplets were brought together on direct (i.e., "head-on") approach, coalescence was rarely observed. Upon oblique approach, however, the same droplets were seen to coalesce readily. An oblique encounter must necessarily give rise to lateral relative motion-or shearing-between the droplet surfaces. It is speculated that, if the charge distributions at the droplet surfaces were heterogeneous, lateral shearing would facilitate many encounters between surface patches of different zeta potentials across the intervening water film. If the repulsion across any local region were sufficiently weak to allow formation of an oil bridge across the water film, coalescence of the drops would follow inevitably. With the hypothesis of surface heterogeneity, it is not necessary to invoke any additional colloidal interactions (such as "hydrophobic forces") to account for the observed droplet-droplet coalescence. This finding may have important implications for the underlying mechanisms of emulsion stability in general and the commercial extraction of bitumen from oil sands in particular.  相似文献   

3.
Oil droplets dispersed in water can be readily studied when they are coated with surfactants, which lower their interfacial tension and enhance their stability. Pure oil droplets are more difficult to study because of their high interfacial tension, which facilitates coalescence and the adsorption of contaminants. In this study, we have characterised the surface charging properties of a water insoluble oil, bromododecane, which has a density close to water. The small density difference allows us to study relatively large drops of this oil and to analyse its coalescence behaviour. The results obtained with this simple, surfactant-free, system suggest that an additional attractive force, such as the long range hydrophobic interaction, might be required to explain oil droplet coalescence behaviour.  相似文献   

4.
Fat perception of food emulsions has been found to relate to in-mouth friction. Previously, we have shown that friction under mouth-like conditions strongly depends on the sensitivity of protein-stabilized emulsion droplets to coalescence. Here, we investigated whether this also implies that oral fat retention depends in a similar manner on the stability of the emulsion droplets against coalescence. We investigate the separate contributions of droplet adhesion and droplet spreading to fat retention at the tongue, as well as the role of saliva. We perform ex vivo (Confocal Raman Spectroscopy; Confocal Scanning Laser Microscopy) experiments using pig's tongue surfaces in combination with human in vivo experiments. These reveal that protein-poor (unstable) emulsions are retained more at the tongue than protein-rich (stable) emulsions. Furthermore, the layer formed by adhering protein-poor droplets is more stable against rinsing. Saliva is found to be very efficient in removing fat and emulsion droplets from the oral surface but its role in fat retention needs further research. We relate our results to the colloidal forces governing droplet adhesion and spreading.  相似文献   

5.
When dispersed in aqueous solution, droplets of bitumen (extra heavy oil) are known to acquire negative surface charges. The resulting electrostatic repulsion, according to traditional DLVO theory, is far too strong for any droplet coalescence to occur. However, from experience it is known that bitumen droplets do coalesce in aqueous suspensions. Furthermore, the process appears to be random, with the probability of coalescence increasing sharply with the drop size. To explain these facts, we modeled the bitumen-water interface as a heterogeneous surface comprising charged "patches"; the zeta potentials of the patches constitute a random variable that is assumed to be Gaussian. The traditional DLVO theory, according to this model, remains sound on the local scale (i.e., for patches interacting across an intervening water layer). Such a theory can predict the probabilities of coalescence in remarkable detail. A parameter central to this theory is the lateral extent of the charged patches, which was estimated to be in the neighborhood of 0.6 μm.  相似文献   

6.
Various nuclear magnetic resonance (NMR) techniques were used to monitor the freezing behaviour of suspended 2-mm-diameter drops. The drops were composed of hydrocarbon oils emulsified in either water or water/sucrose mixtures. As such they were good model systems for the study of spray freezing, sharing structural similarities with potential products such as ice cream. In particular, simple 1H NMR spectroscopy was used to monitor and individually quantify the freezing or solidification behaviour of the various constituent species of the drops. In addition, the effect of freezing on the emulsion droplet size distribution (and hence emulsion stability) was also measured based on NMR self-diffusion measurements. The effect of freeze/thaw cycling was also similarly studied. The nucleation temperature of the emulsion droplets was found to depend on the emulsion droplet size distribution: the smaller the droplets, the lower the nucleation temperature. Emulsion droplet sizing indicated that oil-in-sucrose-solution emulsions were more stable, showing minimal coalescence, whereas oil-in-water emulsions showed significant coalescence during freezing and freeze/thaw cycling.  相似文献   

7.
Recent advances in atomic force microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical interpretation of the interaction between a liquid droplet and a solid surface or between two liquid droplets. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface in the absence of stabilizers. It was found that even at a relatively elevated electrolyte concentration of 0.1 M NaNO3, depending on the solution pH, interactions between two identical droplets or a droplet and a mica surface could be repulsive. A simple theoretical analysis of the magnitude and range of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force behavior is discussed in the context of ion adsorption, and the arising charging effects, at the bare oil-water interface.  相似文献   

8.
对商品化的DCAT21表面/界面张力仪进行改造, 用于直接测量液滴间相互作用力, 同时用数码摄像头Digital 3.0观察记录两液滴接近, 挤压, 排液, 聚并等过程. 研究发现, 溶液中微小液滴间的相互作用力随距离的变化曲线能够提供分散液滴的行为特征信息: 曲线上不同阶段的斜率反映力的大小; 从液滴接触后到聚并前的挤压距离反映液滴的稳定性. 表面活性剂种类不同, 对两液滴聚并所起的稳定作用不同, 非离子表面活性剂具有较好的稳定作用. 溶液中聚合物分子在薄液膜中形成具有一定强度的层状结构, 阻碍液滴聚并, 受力曲线呈阶梯状.  相似文献   

9.
Krebs T  Schroen K  Boom R 《Lab on a chip》2012,12(6):1060-1070
We present the results of experiments studying droplet coalescence in a dense layer of emulsion droplets using microfluidic circuits. The microfluidic structure allows direct observation of collisions and coalescence events between oil droplets dispersed in water. The coalescence rate of a flowing hexadecane-in-water emulsion was measured as a function of the droplet velocity and droplet concentration from image sequences measured with a high-speed camera. A trajectory analysis of colliding droplet pairs allows evaluation of the film drainage profile and coalescence time t(c.) The coalescence times obtained for thousands of droplet pairs enable us to calculate coalescence time distributions for each set of experimental parameters, which are the mean droplet approach velocity (v(0)), the mean dispersed phase fraction (φ) and the mean hydraulic diameter of a droplet pair (d(p)). The expected value E(t(c)) of the coalescence time distributions scales as E(t(c)) is proportional to (v(0))(-0.105±0.043)(d(p))(0.562±0.287), but is independent of φ. We discuss the potential of the procedure for the prediction of emulsion stability in industrial applications.  相似文献   

10.
The coalescence stability of poly(dimethylsiloxane) emulsion droplets in the presence of silica nanoparticles ( approximately 50 nm) of varying contact angles has been investigated. Nanoparticle adsorption isotherms were determined by depletion from solution. The coalescence kinetics (determined under coagulation conditions at high salt concentration) and the physical structure of coalesced droplets were determined from optical microscopy. Fully hydrated silica nanoparticles adsorb with low affinity, reaching a maximum surface coverage that corresponds to a close packed monolayer, based on the effective particle radius and controlled by the salt concentration. Adsorbed layers of hydrophilic nanoparticles introduce a barrier to coalescence of approximately 1 kT, only slightly reduce the coalescence kinetics, and form kinetically unstable networks at high salt concentrations. Chemically hydrophobized silica nanoparticles, over a wide range of contact angles (25 to >90 degrees ), adsorb at the droplet interface with high affinity and to coverages equivalent to close-packed multilayers. Adsorption isotherms are independent of the contact angle, suggesting that hydrophobic attraction overcomes electrostatic repulsion in all cases. The highly structured and rigid adsorbed layers significantly reduce coalescence kinetics: at or above monolayer surface coverage, stable flocculated networks of droplets form and, regardless of their wettability, particles are not detached from the interface during coalescence. At sub-monolayer nanoparticle coverages, limited coalescence is observed and interfacial saturation restricts the droplet size increase. When the nanoparticle interfacial coverage is >0.7 and <1.0, mesophase-like microstructures have been noted, the physical form and stability of which depends on the contact angle. Adsorbed nanoparticle layers at monolayer coverage and composed of a mixture of nanoparticles with different hydrophobisation levels form stable networks of droplets, whereas mixtures of hydrophobized and hydrophilic nanoparticles do not effectively stabilize emulsion droplets.  相似文献   

11.
Degradation of kinetically-stable o/w emulsions   总被引:3,自引:0,他引:3  
This article summarizes the studies on the degradation of the thermodynamically unstable o/w (nano)emulsion--a dispersion of one liquid in another, where each liquid is immiscible, or poorly miscible in the other. Emulsions are unstable exhibiting flocculation, coalescence, creaming and degradation. The physical degradation of emulsions is due to the spontaneous trend toward a minimal interfacial area between the dispersed phase and the dispersion medium. Minimizing the interfacial area is mainly achieved by two mechanisms: first coagulation possibly followed by coalescence and second by Ostwald ripening. Coalescence is often considered as the most important destabilization mechanism leading to coursing of dispersions and can be prevented by a careful choice of stabilizers. The molecular diffusion of solubilizate (Ostwald ripening), however, will continuously occur as soon as curved interfaces are present. Mass transfers in emulsion may be driven not only by differences in droplet curvatures, but also by differences in their compositions. This is observed when two or more chemically different oils are emulsified separately and the resulting emulsions are mixed. Compositional ripening involves the exchange of oil molecules between emulsion droplets with different compositions. The stability of the electrostatically- and sterically-stabilized dispersions can be controlled by the charge of the electrical double layer and the thickness of the droplet surface layer formed by non-ionic emulsifier. In spite of the similarities between electrostatically- and sterically-stabilized emulsions, there are large differences in the partitioning of molecules of ionic and non-ionic emulsifiers between the oil and water phases and the thickness of the interfacial layers at the droplet surface. The thin interfacial layer (the electrical double layer) at the surface of electrostatically stabilized droplets does not create any steric barrier for mass transfer. This may not be true for the thick interfacial layer formed by non-ionic emulsifier. The interactive sterically-stabilized oil droplets, however, can favor the transfer of materials within the intermediate agglomerates. The stability of electrosterically-stabilized emulsion is controlled by the ratio of the thickness of the non-ionic emulsifier adsorption layer (delta) to the thickness of the electrical double layer (kappa(-1)) around the oil droplets (delta/(kappa(-1))) = (deltakappa). The monomer droplet degradation can be somewhat depressed by transformation of coarse emulsions to nano-emulsion (miniemulsion) by intensive homogenization and by the addition of a surface active agent (coemulsifier) or/and a water-insoluble compound (hydrophobe). The addition of hydrophobe (hexadecane) to the dispersed phase significantly retards the rate of ripening. A long chain alcohol (coemulsifier) resulted in a marked improvement in stability, as well, which was attributed to a specific interaction between alcohol and emulsifier and to the alcohols tendency to concentrate at the o/w interface to form stronger interfacial film. The rate of ripening, according to the Lifshitz-Slyozov-Wagner (LSW) model, is directly proportional to the solubility of the dispersed phase in the dispersion medium. The increased polarity of the dispersed phase (oil) decreases the stability of the emulsion. The molar volume of solubilizate is a further parameter, which influences the stability of emulsion or the transfer of materials through the aqueous phase. The interparticle interaction is expected to favor the transfer of solubilizate located at the interfacial layer. The kinetics of solubilization of non-polar oils by ionic micelles is strongly related to the aqueous solubility of the oil phase (the diffusion approach), whilst their solubilization into non-ionic micelles can be contributed by interparticle collisions.  相似文献   

12.
The course of the flow-induced coalescence and the effects of the Marangoni force and steric repulsion on the coalescence suppression in polymer blends containing a compatibilizer were analysed. The expression for coalescence probability of deformable droplets, reliably describing its dependence on the droplet size, was proposed. It was shown that a strong negative correlation exists between the Marangoni force and steric repulsion contributions and the decisive mechanism of the coalescence suppression cannot be determined from the dependence of coalescence on the shear rate. For prediction of the magnitude of the Marangoni force, the knowledge of the rate of copolymer diffusion along the interface is necessary. The influence of simultaneous collisions of three and more droplets and of droplet deformation in flow, which are not included in available theories, is discussed.  相似文献   

13.
This study summarises the rheological behaviour of emulsion bitumen drops in the presence of aqueous solutions of de-ionised or process water (DIW or PW) containing montmorillonite clays (M) and/or calcium ions (Ca++). The presence of calcium ions and montmorillonite clays resulted in the plastic behaviour of bitumen drops. In a DIW+M+Ca++ system, increasing temperature and calcium ion concentration resulted in an increase in the number and degree of plastic bitumen drops. In the presence of considerable amounts of Ca++ ions and/or at higher experimental temperature, bitumen drops in a PW+M system exhibited no significant overall plasticity of their surfaces. Both calcium and sodium ions contained in process water compete with each other to occupy the montmorillonite clay surface. At the pH value of process water (pH congruent with8), increasing the temperature did not change the value of bitumen droplet zeta potential. Stability of bitumen-in-water emulsions at 22 degrees C showed that bitumen droplets coalesced upon contact in the DIW+M system. The addition of calcium ions (Ca++) led to the inhibition of coagulation and coalescence of bitumen droplets, which may indicate the formation of CaM aggregates at the bitumen-water interface.  相似文献   

14.
Water-in-oil emulsions with a low electrolyte content in the internal phase are unstable with respect to Ostwald ripening. The main components of the total pressure acting on the surface of internal phase droplets are considered. The equilibrium values of the diameters of dispersed phase droplets are calculated. The dependences of the difference in the osmotic and Laplace pressures on the droplet size and electrolyte concentration in the droplets are obtained. It is shown that, at the electrolyte concentration below the critical value, the number of droplets in emulsion decreases. If the concentration is above the critical value, water diffuses from small to large droplets, but their number remains unchanged. The change in NaCl concentration in the droplets of internal phase of polydisperse emulsion during the Ostwald ripening is calculated. The results of calculations correlate with the experimental data on the stability of emulsions with respect to coalescence and sedimentation.  相似文献   

15.
《Colloids and Surfaces》1988,29(1):29-51
The stability of water-in-crude oil emulsions when subjected to high voltage electric fields depends on the nature of the crude oil and the presence of chemical additives. Optical microscopy, conductivity and coalescence measurements have revealed two distinct types of behaviour, designated type I and type II. These are shown to be related to the crude oil/water interfacial rheological properties. For incompressible crude oil/water films, droplet—droplet coalescence is hindered and chains of water droplets are established. These increase the electrical conductivity of the emulsion (type I behaviour). On the other hand, efficient droplet—droplet coalescence accompanied by minimal conduction occurs in electric fields if the interfacial film is compressible (type II).  相似文献   

16.
Water-in-oil emulsions of Athabasca bitumen diluted with toluene have been studied using the latest advances in acoustic and electroacoustic spectroscopy. From the sound attenuation spectra of emulsions, the water droplet size distribution is measured. The electrical surface charge density of the water droplets is obtained from the colloid vibration current. In the case of freshly prepared water-in-oil emulsions, the droplet size increased while the surface charge density decreased with time. The time-dependent relaxation of the surface charge ranges from several hours to 3 days, and it is probably due to the slow adsorption/desorption kinetics of bituminous components at the water-oil interface. This study illuminates the contribution of the electrostatic interactions to the stability of water-in-oil emulsions.  相似文献   

17.
The micro-floatation of an amorphous graphite sample was conducted using a Hallimond tube with various droplet sizes of emulsified kerosene as collector. The results showed that the experimental recovery of the sample and the kinetic constants (both k and ?) obtained from the four kinetics models all increased with the decrease of the droplet size. These may be attributed to the fact that the smaller and greater the specific surface area of the droplets, the more easy it is for them to collide with, adhere to, and spread on the sample particles, and then render the particles more hydrophobic. The stronger hydrophobic of particles was better beneficial to the adhesion probability and force between them and the bubbles, which made more amorphous graphite particles floated in the floatation process. In addition, the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was applied to study the interaction between the sample particles and the emulsified kerosene droplets. The results indicated that the hydrophobic attractions played a dominant role in the combined effect of collision and attachment between the sample particles and the droplets.  相似文献   

18.
There have been reports, originally by the Bristol group, and subsequently by others, of the preparation and properties of emulsions of stable, nearly monodisperse droplets of poly(dimethylsiloxane) (PDMS) in water, where no added surfactant is used. It has been assumed that their stability is due to the high density of surface-ionized hydroxyl groups, similar in fact to the closely related St?ber silica particles. In this study we confirm, from droplet lifetime studies, that droplets, prepared from such synthesized PDMS, are significantly more stable to coalescence than similar-sized droplets prepared from three types of commercially available PDMS, containing HO-, MeO-, or Me3-terminated chains, respectively. It is shown, however, that the zeta potentials of the synthesized PDMS and of the various commercial oils are all very similar (as indeed are their Hamaker constants). So some other explanation must be inferred for the enhanced stability to coalescence of the synthesized PDMS droplets compared to the commercial PDMS droplets. It is shown, for droplets formed from n-hexane and the synthesized oil, that stability to coalescence is conferred at PDMS volume fractions (phiPDMS) around 0.2 in the mixture. The synthesized PDMS is known to consist of mixtures of cyclic PDMS and short-chain linear species, with terminal -OH groups. There is some (indirect) evidence that in the interval 0.25 < phiPDMS < 0.35, the linear PDMS chains may be adsorbed close to a monolayer at the mixed oil/water interface, possibly conferring some enhanced Gibbs elasticity to the interface. This underpins the possibility that, in the synthesized oil droplets themselves, there is also preferential adsorption of the linear chains at the PDMS/water interface, and this leads to a value of the Gibbs elasticity, sufficient to significantly reduce coalescence. Unfortunately, the Gibbs elasticity could not be measured in this case. However, such preferential adsorption is unlikely to occur with the commercial PDMS oils, which are not so heterogeneous. Finally, it is shown that droplets of the three commercial PDMS oils could be stabilized against coalescence, if a sufficient, minimum amount of sodium dodecyl sulfate (SDS) is added. Gibbs elasticity values have been estimated in these cases, from plots of interfacial tension against ln(SDS concentration).  相似文献   

19.
孙昭艳 《高分子科学》2014,32(3):255-267
The effect of silica nanoparticles on the morphology of (10/90 wt%) PDMS/PBD blends during the shear induced coalescence of droplets of the minor phase at low shear rate was investigated systematically in situ by using an optical shear technique. Two blending procedures were used: silica nanoparticles were introduced to the blends by pre-blending silica particles first in PDMS dispersed phase (procedure 1) or in PBD matrix phase (procedure 2). Bimodal or unimodal droplet size distributions were observed for the filled blends during coalescence, which depend not so much on the surface characteristics of silica but mainly on blending procedure. For pure (10/90 wt%) PDMS/PBD blend, the droplet size distribution exhibits bimodality during the early coalescence. When silica nanoparticles (hydrophobic and hydrophilic) were added to the blends with procedure l, bimodal droplet size distributions disappear and unimodal droplet size distributions can be maintained during coalescence; the shape of the different peaks is invariably Gaussian. Simultaneously, coalescence of the PDMS droplets was suppressed efficiently by the silica nanoparticles. It was proposed that with this blending procedure the nanoparticles should be mainly kinetically trapped at the interface or in the PDMS dispersed phase, which provides an efficient steric barrier against coalescence of the PDMS dispersed phase. However, bimodal droplet size distributions in the early stage of coalescence still occur when incorporating silica nanoparticles into the blends with procedure 2, and then coalescence of the PDMS droplets cannot be suppressed efficiently by the silica nanoparticles. It was proposed that with this blending protocol the nanoparticles should be mainly located in the PBD matrix phase, which leads to an inefficient steric barrier against coalescence of the PDMS dispersed phase; thus the morphology evolution in these filled blends is similar to that in pure blend and bimodal droplet size distributions can be observed during the early coalescence. These results imply that exploiting non-equilibrium processes by varying preparation protocol may provide an elegant route to regulate the temporal morphology of the filled blends during coalescence.  相似文献   

20.
The self-assembly of hydrophilic silica nanoparticles at the surface of charged submicrometer triglyceride droplets has been investigated with the aim to optimize the preparation of stable colloidosomes. The droplet charge, oil phase volume fraction, droplet/nanoparticle ratio, and salt concentration play important roles in controlling nanoparticle interactions and are reflected in the colloidosome zeta potential, size, stability, and interfacial structure (visualized by freeze-fracture SEM). Silica nanoparticle interactions with negatively charged droplets are weak, and partially covered droplets are identified. Positively charged droplets are strongly coated by silica nanoparticles and undergo charge reversal at specific droplet to nanoparticle ratios and electrolyte concentrations. Droplets at volume fractions (varphi) <10 (-4) undergo time-dependent limited coalescence until nanoparticle coverage is complete. For varphi in the range 10 (-4) to 2.5 x 10 (-4) and at certain critical droplet to nanoparticle ratios, droplets undergo neutralization or charge reversal coupled with aggregation and precipitation; this occurs in a time-independent manner. Specific conditions have been identified where stable 1-3 mum colloidosomes can be phase separated from heterocoagulates of droplets and nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号