In this paper, a selective and sensitive sensor for the determination of p-aminophenol (PAP) was developed by grafting molecularly imprinted polymers (MIPs) on the surface of silica-coated CdTe quantum dots (CdTe@SiO2@MIPs). The obtained CdTe@SiO2@MIPs were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy. The fluorescence intensity of CdTe@SiO2@MIPs was more strongly quenched by PAP than that of the structural analogues of PAP. Under the optimal conditions, the fluorescence intensity of the CdTe@SiO2@MIPs decreased sensitively with the increase of PAP concentration in the range of 0.05–50 μM. The limit of detection was 0.02 μM (3σ/Ksv). The sensor was successfully used to determine PAP in tap and lake water samples, and the average recoveries of PAP at various spiking levels ranged from 97.33 % to 103.3 % with relative standard deviations below 20 %. 相似文献
To utilize the nanomaterials as an effective carrier for the drug delivery applications, it is important to study the interaction between nanomaterials and drug or biomolecules. In this study GSH functionalized Mn2+-doped CdTe/ZnS QDs has been utilized as a model nanomaterial due to its high luminescence property. Folic acid (FA) gradually quenches the FL of GSH functionalized Mn2+???doped CdTe/ZnS QDs. The Stern-Volmer quenching constant (Ksv), binding constant (Ks) and effective quenching constant (Ka) for the FA-QDs system is calculated to be 1.32?×?105 M?1, 1.92?×?105 and 0.27?×?105 M?1, respectively under optimized condition (Temp. 300 K, pH 8.0, incubation time 40 min.). The effects of temperature, pH, and incubation time on FA-QDs system have also been studied. Statistical analysis of the quenched FL intensity versus FA concentration revealed a linear range from 1?×?10?7 to 5.0?×?10?5 for FA detection. The LOD of the current nano-sensor for FA was calculated to be 0.2 μM. The effect of common interfering metal ions and other relevant biomolecules on the detection of FA (12.0 μM) have also been investigated. L-cysteine and glutathione displayed moderate effect on FA detection. Similarly, the common metal ions (Na+, K+, Ca2+ and Mg2+) produced minute interference while Zn2+ Cu2+ and Fe3+ exert moderate interference. Toxic metal ions (Hg2+ and Pb2+) produced severe interferences in FA detection.
In the present work, we synthesized the carbon quantum dots (CQDs) by one step hydrothermal method using the dried beet powder as the carbon source without additional chemical reagents and functionalization. The as-prepared CQDs are quasi-spherical carbon nanoparticles with diameters of 4–8 nm as well as surface functional groups such as carboxyl and hydroxyl groups, and exhibit good water-solubility, biocompatibility, and strong fluorescence. It is confirmed that amoxicillin (AMO) could enhance the fluorescent intensity of CQDs, the I/I0 showed a linear correlation between the intensity of fluorescence and the concentration of AMO in a broad range. These superior properties render a potential application of the CQDs in biomedical. 相似文献
Schiff base receptor 1a has been synthesised and attached to the surface of preformed CdSe/ZnS Quantum Dots (QDs) to form QD-conjugate 2a. While 1a was determined to be selective for Mg2+, 2a demonstrated selectivity for both K+ and Ca2+ when tested against a range of physiologically and environmentally relevant cations by changes in the fluorescence spectra. Thus, the nanoparticle surface functions as a scaffold for the organisation of receptors enabling semi-selective binding. The fluorescence response was shown to be linear between 15–50?μM for K+ and 2–35?μM for Ca2+. It was also demonstrated that 2a could measure both K+ and / or Ca2+ in solutions containing both ions. 相似文献
The interaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH●) free radical with thiol-capped CdTe quantum dots (QDs) has been studied by UV–vis spectroscopy, steady state and time resolved
fluorescence measurements. Addition of DPPH● radical to CdTe QDs resulted in fluorescence quenching. The interaction occurs through static quenching as this was confirmed
by fluorescence lifetime measurements. Time course absorption studies indicates that DPPH● may be reduced by interaction with QDs to the substituted hydrazine form (2,2-diphenyl-1-picrylhydrazine) DPPH-H. The mechanism
of fluorescence quenching of CdTe QDs by DPPH● is proposed. 相似文献
We fabricate the hybrid films of colloidal CdSe/ZnS quantum dots (QDs) and poly(9-vinylcarbazole) (PVK) sandwiched between two electrodes. The voltage and temperature dependences of the electroluminescence (EL) are measured. The quantum-confined Stark effect of colloidal QDs is clearly observed. To explore the mechanism in the QD EL, hybrid films are fabricated with different concentrations of colloidal QDs. Electrons and holes are proposed to be separately transported in QDs and PVK, respectively. 相似文献
A novel sensitive method for detection of DNA methylation was developed with thioglycollic acid (TGA)-capped CdTe quantum dots (QDs) as fluorescence probes. Recognition of methylated DNA sites would be useful strategy due to the important roles of methylation in disease occurrence and developmental processes. DNA methylation occurs most often at cytosine-guanine sites (CpG dinucleotides) of gene promoters. The QDs significantly interacted with hybridized unmethylated and methylated DNA. The interaction of CpG rich methylated and unmethylated DNA hybrid with quantum dots as an optical probe has been investigated by fluorescence spectroscopy and electrophoresis assay. The fluorescence intensity of QDs was highly dependent to unmethylated and methylated DNA. Specific site of CpG islands of Adenomatous polyposis coli (APC), a well-studied tumor suppressor gene, was used as the detection target. Under optimum conditions, upon the addition of unmethylated dsDNA, the fluorescence intensity increased in linear range from 1.0?×?10??10 to 1.0?×?10??6M with detection limit of 6.2?×?10??11 M and on the other hand, the intensity of QDs showed no changes with addition of methylated dsDNA. We also demonstrated that the unmethylated and methylated DNA and QDs complexes showed different mobility in electrophoresis assay. This easy and reliable method could distinguish between methylated and unmethylated DNA sequences. 相似文献