首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
Steady incident flow past a circular cylinder for sub- to supercritical Reynolds number has been simulated as an unsteady Reynolds-averaged Navier–Stokes (RANS) equation problem using nonlinear eddy-viscosity modelling assuming two-dimensional flow. The model of Craft et al. (Int. J. Heat Fluid Flow 17 (1996) 108), with adjustment of the coefficients of the ‘cubic’ terms, predicts the drag crisis at a Reynolds number of about 2×105 due to the onset of turbulence upstream of separation and associated changes in Strouhal number and separation positions. Slightly above this value, at critical Reynolds numbers, drag is overestimated because attached separation bubbles are not simulated. These do not occur at supercritical Reynolds numbers and drag coefficient, Strouhal number and separation positions are in approximate agreement with experimental measurements (which show considerable scatter). Fluctuating lift predictions are similar to sectional values measured experimentally for subcritical Reynolds numbers but corresponding measurements have not been made at supercritical Reynolds numbers. For oscillatory ambient flow, in-line forces, as defined by drag and inertia coefficients, have been compared with the experimental values of Sarpkaya (J. Fluid Mech. 165 (1986) 61) for values of the frequency parameter, β=D2T, equal to 1035 and 11240 and Keulegan–Carpenter numbers, KC=U0T/D, between 0.2 and 15 (D is cylinder diameter, ν is kinematic viscosity, T is oscillation period, and U0 is the amplitude of oscillating velocity). Variations with KC are qualitatively reproduced and magnitudes show best agreement when there is separation with a large-scale wake, for which the turbulence model is intended. Lift coefficients, frequency and transverse vortex shedding patterns for β=1035 are consistent with available experimental information for β≈250−500. For β=11240, it is predicted that separation is delayed due to more prominent turbulence effects, reducing drag and lift coefficients and causing the wake to be more in line with the flow direction than transverse to it. While these oscillatory flows are highly complex, attached separation bubbles are unlikely and the flows probably two dimensional.  相似文献   

2.
This work aims to develop a process for controlling a cylinder wake, especially the von Karman vortex street, in such way so as to drastically reduce the drag coefficient. A new technique for influencing the cylinder wake is proposed in the present experimental study. The flow around a circular cylinder is perturbed by temporarily changing the cylinder diameter. Experiments have been performed for Reynolds numbers in the range Re=9,500 to Re=31,500. Three values of the controlling frequencies are considered: fs1=0.41, fs2=0.54 and fs3=0.73, in addition to the stationary case corresponding to a non-deformable cylinder, fs0=0. The visualisation flow shows that the pulsing motion of the cylinder walls greatly influences both the near and far wake dynamics. A decrease of the drag is expected.
OualliEmail: Fax: +213-2186-3204
  相似文献   

3.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

4.
The aerodynamic characteristics of a square cylinder with an upstream rod in a staggered arrangement were examined. The pressure measurement was conducted in a wind tunnel at a Reynolds number of ReD=82,000 (based on the width of the square cylinder) and the flow visualization was carried out in a water tunnel with the hydrogen bubble technique at ReD=5,200. When the rod and the square cylinder were in tandem, the reduction of drag was mainly caused by the increase of the rear suction pressure. When the staggered angle was introduced, the shield and disturbance effect of the rod on the square cylinder diminished, which results in the increase of the cylinder drag. The side force induced by the staggered angle is small (the maximum value is 20% of the drag of the isolate square cylinder). There were six different flow modes with various staggered angles and spacing ratios, and the corresponding flow patterns are presented in present paper.  相似文献   

5.
Results of numerical and experimental modeling of a supersonic flow (M = 4.85) around a model of a streamwise-aligned cylinder with a cellular-porous insert permeable for the gas on the frontal face of the cylinder are described. Experimental data on the influence of the pore structure and the length of the porous cylindrical insert on the model drag, pressure on the frontal face of the cylinder, and flow pattern are obtained. Numerical modeling includes solving Favre-averaged Navier-Stokes equations, which describe the motion of a viscous compressible heat-conducting gas. The system is supplemented with a source term taking into account the drag of the porous body within the framework of the continuum model of filtration. Data on pressure and velocity fields inside the porous body are obtained in calculations, and the shape of an effective pointed body whose drag is equal to the drag of the model considered is determined. The calculated results are compared with the measured data and schlieren visualization of the flow field.  相似文献   

6.
Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p  ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.  相似文献   

7.
We employ passive flow control using two-dimensional hydrofoils to reduce vortex-induced vibrations (VIV) and drag on a cylinder of circular cross-section. We test the hypothesis that by using foils to bend the streamlines around the cylinder, and hence forcing the flow to approach potential flow-like patterns VIV and drag will be reduced. A systematic parametric search, first using groups of two and then four foils, shows that it is possible to completely eliminate vibrations and reduce the drag coefficient to about Cd=0.50 at sub-critical Reynolds numbers. This parametric search is conducted in conjunction with force measurement and particle image velocimetry on a fixed towed cylinder. The effectiveness of the foils in regards to VIV was further tested with an apparatus allowing free transverse vibrations of a towed cylinder.  相似文献   

8.
For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed.A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve from the torque measurements T(N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N the rotational velocity of the outer, rotating, cylinder.In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T(N) into for a wide-gap (Ro/Ri = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour after exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures. By means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.  相似文献   

9.
Active and passive flow control methods have been studied for decades, but there have been only a few studies of flow control methods using ion wind, which is the bulk motion of neutral molecules driven by locally ionized air from a corona discharge. This paper describes an experimental study of ion wind wake control behind a circular cylinder. The experimental conditions consisted of a range of electrohydrodynamic numbers—the ratio of an electrical body force to a fluid inertial force—from 0 to 2 and a range of Reynolds numbers from 4×103 to 8×103. Pressure distributions over the cylinder surface were measured and flow visualizations were carried out using a smoke-wire method. The flow visualizations confirmed that ion wind significantly affects the wake structure behind a circular cylinder, and that the pressure drag can be dramatically reduced by superimposing ion wind.List of symbols BR blockage ratio - C d coefficient of the pressure drag - C p coefficient of the surface pressure, 2(pp 0)/(U 0 2) - C pb coefficient of the base surface pressure, 2(p bp 0)/(U 0 2) - D diameter of the cylinder - D P pressure drag - d p diameter of particle - E the electric field - F e Coulombian force (qE) - F v viscous force - H wire-to-cylinder spacing - I total electric current (A) - L the axial length of cylinder (m) - N EHD electrohydrodynamic number - p b base pressure of cylinder at =180° - p 0 reference static pressure at 10D upstream - q the charge on the particle - R radius of the cylinder - V applied voltage (kV) - U 0 mean flow velocity (m/s) - ion mobility in air (m2/(s V)) - 0 permittivity of free space - viscosity of fluid (kg/ms) - density of fluid (kg/m3) - installation angle of a wire electrode (°)  相似文献   

10.
This paper is concerned with the numerical simulation of the flow structure around a square cylinder in a uniform shear flow. The calculations were conducted by solving the unsteady 2D Navier–Stokes equations with a finite difference method. The effect of the shear parameter K of the approaching flow on the vortex-shedding Strouhal number and the force coefficients acting on the square cylinder is investigated in the range K=0·0–0·25 at various Reynolds numbers from 500 to 1500. The computational results are compared with some existing experimental data and previous studies. The effect of shear rate on the Strouhal number and the force acting on the cylinder has a tendency to reduce the oscillation. The Strouhal number, mean drag and amplitude of the fluctuating force tend to decrease as the shear rate increases, but show no significant change at low shear rate. Increasing the Reynolds number decreases the Strouhal number and increases the force acting on the cylinder. At high shear rate the shedding frequencies of the fluctuating drag and lift coefficients are identical. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Passive control of the wake behind a circular cylinder in uniform flow is studied by numerical simulation at ReD=80. Two small control cylinders are placed symmetrically along the separating shear layers at various stream locations. In the present study, the detailed flow mechanisms that lead to a significant reduction in the fluctuating lift but maintain the shedding vortex street are clearly revealed. When the stream locations lie within 0.8≤XC/D≤3.0, the alternate shedding vortex street remains behind the control cylinders. In this case, the symmetric standing eddies immediately behind the main cylinder and the downstream delay of the shedding vortex street are the two primary mechanisms that lead to a 70–80% reduction of the fluctuating lift on the main cylinder. Furthermore, the total drag of all the cylinders still has a maximum 5% reduction. This benefit is primarily attributed to the significant reduction of the pressure drag on the main cylinder. Within XC/D>3.0, the symmetry of the standing eddy breaks down and the staggered vortex street is similar to that behind a single cylinder at the same Reynolds number. In the latter case, the mean pressure drag and the fluctuating lift coefficients on the main cylinder will recover to the values of a single cylinder.  相似文献   

12.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a detailed investigation on the flow past a porous covering cylinder is presented through the lattice Boltzmann method. The Brinkman‐Forchheimer‐extended Darcy model is adopted for the entire flow field with the solid, fluid, and porous medium. The effects of several parameters, such as porous layer thickness, Darcy number, porosity, and Reynolds number on flow field are discussed. Compared with the case of a solid cylinder, the present work shows that the porous layer may play an important role on the flow, the lift and drag force exerted on the cylinder. The numerical results indicate that the maximal drag coefficient Cd and maximal amplitude of lift coefficient Cl exist at certain Darcy number which is in the range of 10?6–10?2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Unsteady forces on circular cylinders in a cross-flow   总被引:1,自引:0,他引:1  
A three-axis piezoelectric load cell was used to measure the local unsteady forces induced on cylinders placed in a cross-flow. In conjunction with this, a single hot-wire was used to traverse the wake at a fixed distance behind the cylinder so that correlations between the induced forces on the cylinder and the wake velocity could be calculated to provide insight into the character of the flow-induced unsteady forces. Experiments were carried out on both two-dimensional and finite-span cylinders at a Reynolds number of 46,000. For the two-dimensional cylinder case, substantial evidence was obtained to demonstrate that the strength of the vortex roll-up along the span was quite uniform. Consequently, the lift-velocity correlation along the span remained unchanged. On the other hand, there was a total lack of correlation between the fluctuating drag and the wake velocity, thus indicating that the drag signal was not quite periodic. In the finite-span cylinder case, the separated flow from the top edge of the cylinder was found to suppress vortex shedding along the span of the cylinder, destroyed its coherence and caused the wake flow to oscillate in the stream direction. This oscillation induced a significant fluctuating drag on the cylinder. Consequently, the fluctuating drag far exceeded the fluctuating lift and the wake velocity was found to correlate well with the drag and not with the lift. This correlation remained intact along the span of the cylinder. Finally, the rms fluctuating lift and drag forces were found to vary along the cylinder span, with the lift increasing and the drag decreasing as the base of the cylinder is approached; thus suggesting that a submerged two-dimensional region exists near the base of the cylinder.List of symbols a span of active element on cylinder - C D local rms drag coefficient, - C L local rms lift coefficient, - C D local mean drag coefficient - (C D ) 2D spanwise-averaged mean drag coefficient for two dimensional cylinder - d diameter of cylinder (= 10.2 cm) - D fluctuating component of instantaneous drag - D local rms of fluctuating drag - E D power spectrum of fluctuating drag, defined as - E L power spectrum of fluctuating lift, defined as - E U power spectrum of fluctuating streamwise velocity, defined as - f L dominant frequency of lift spectrum - f D dominant frequency of drag spectrum - f u dominant frequency of velocity spectrum - h span of cylinder - H height of test section (= 30.5 cm) - L fluctuating component of instantaneous lift - L local rms of fluctuating lift - R Du () cross-correlation function of streamwise velocity and local drag - R Lu () cross-correlation function of streamwise velocity and local lift - Re Reynolds number, - S L Strouhal number based on f L , - S D Strouhal number based on f D , - S U Strouhal number based on f u , - t time - u fluctuating component of instantaneous streamwise velocity - u rms of streamwise fluctuating velocity - u rms of streamwise fluctuating velocity upstream of cylinder - U mean streamwise velocity - U mean stream velocity upstream of cylinder - x streamwise distance measured from axis of cylinder - y transverse distance measured from axis of cylinder - z spanwise distance measured from floor of test section - v kinematic viscosity of air - density of air - time lag in cross-correlation function - D normalized spectrum of fluctuating drag - L normalized spectrum of fluctuating lift - U normalized spectrum of fluctuating streamwise velocity  相似文献   

15.
Drag Reduction of a Circular Cylinder Using an Upstream Rod   总被引:3,自引:0,他引:3  
Experimental studies on the drag reduction of the circular cylinder were conducted by pressure measurement at a Reynolds number of 82 000 (based on the cylinder diameter). A rod was placed upstream of and parallel to the cylinder to control the flow around the cylinder. The upstream rod can reduce the resultant force of the cylinder at various spacing between the rod and the cylinder for α < 5(α defined as the staggered angle of the rod and the cylinder). For α > 10, the resultant force coefficient has a large value, so the upstream rod cannot reduce the force on the cylinder any more. For α = 0 and d/D = 0.5 (where d and D are the diameter of the rod and the cylinder, respectively), the maximum drag of the cylinder reduces to 2.34% that of the single cylinder. The mechanism of the drag reduction of the cylinder with an upstream rod in tandem was presented by estimating the local contributions to the drag reduction of the pressure variation. In the staggered arrangement, the flow structures have five flow patterns (they are the cavity mode, the wake splitting mode, the wake merge mode, the weak boundary layer interaction mode and the negligible interaction mode) according to the pressure distribution and the hydrogen bubble flow visualization. The half plane upwind of the cylinder can be divided to four regions, from which one can easily estimates the force acting on the circular cylinder with an upstream rod in staggered arrangement.  相似文献   

16.
An experimental investigation has been carried out to study the natural convection interaction between a pair of horizontal cylinders located directly one above the other. It is found that the presence of the upper cylinder has negligible effect on the heat transfer rate from the lower cylinder, thus attention has been given on the heat transfer characteristics from the upper cylinder The ratio S/D of the center-to-center separation distance was varied from three to six by a step of one. The temperature imbalance ΔT1/ΔT2 was also varied independently. The experiments were conducted with Rayleigh numbers varying from 6300 to 13000. It was found that maximum enhancement of the heat transfer from the upper cylinder for a given ratio S/D depends primarily from the temperature imbalance ΔT1/ΔT2 and weakly from the Rayleigh number. The experimental results for the maximum enhancement, can be presented fairly well by the empirical formula (ΔT1/ΔT2)op=0.136(S/D)0.75 for 2≦S/D≦6, 1000≦Ra≦200000. The findings of this investigation agree closely with those previously reported in the literature.  相似文献   

17.
At around the critical Reynolds number Re = (1.5–4.0)·105 there is an abrupt change in the pattern of transverse subsonic flow past a circular cylinder, and the drag coefficient Cx decreases sharply [1]. A large body of both experimental and computational investigations has now been made into subsonic flow past a cylinder [1–4]. A significant contribution to a deeper understanding of the phenomenon was made by [4], which gives a physical interpretation of a number of theoretical and experimental results obtained in a wide range of Re. Nevertheless, the complicated nonstationary nature of flow past a cylinder with separation and the occurrence of three-dimensional flows when two-dimensional flow is simulated in wind tunnels do not permit one to regard the problem as fully studied. The aim of the present work was to make additional experimental investigations into transverse subsonic flow past a cylinder and, in particular, to study the possible asymmetric stable flow regimes near the critical Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–157, March–April, 1980.  相似文献   

18.
The wakes of elliptical cylinders are numerically investigated at a Reynolds number ReD = 150. ANSYS-Fluent, based on the finite volume method, is used to simulate two-dimensional Newtonian fluid flow. The cylinder cross-sectional aspect ratio (AR) is varied from 0.25 to 1.0 (circular cylinder), and the angle of attack (α) of the cylinder is changed as α = 0° – 90°. With the changes in AR and α, three distinct wake patterns (patterns I, II, III) are observed, associated with different characteristics of fluid forces. Steady wake (pattern I) is characterised by two steady bubbles forming behind the cylinder, occurring at AR < 0.37 and α < 2.5°. Time-mean drag and fluctuating lift coefficients are small. Pattern II refers to Karman wake followed by steady wake (AR ≥ 0.37 – 0.67, depending on α) with the Karman street transitioning to two steady shear layers downstream. An inflection angle αi is identified where the time-mean drag of the elliptical cylinder is identical to that of a circular cylinder. Pattern III is the Karman wake followed by secondary wake (AR ≤ 0.67, α > 52°), where the Karman street forming behind the cylinder is modified to a secondary vortex street with a low frequency. The Time-mean drag coefficient is maximum for this pattern.  相似文献   

19.
The supersonic perfect-gas flow past a circular cylinder is studied on the basis of a numerical analysis of the time-dependent two-dimensional Reynolds equations using a differential q– turbulence model with reference to the experimental conditions. The calculations are carried out at Reynolds and Mach numbers Re=2× 105 and M=1.1, 1.3, and 1.7 and the experimental investigations at Re=1.62×105–2×105 and Mach numbers on the interval 0.7 M 1.7. The calculated and experimental data on the pressure coefficient distribution over the cylinder surface, the location of the separation point on the surface, and the pressure drag coefficient are compared.  相似文献   

20.
Finite-span circular cylinders with two different aspect ratios, placed in a cross-flow, are investigated experimentally at a cylinder Reynolds number of 46,000. Simultaneous measurements of the flow-induced unsteady forces on the cylinders and the stream velocity in the wake are carried out. These results together with mean drag measurements along the span and available literature data are used to evaluate the flow mechanisms responsible for the induced unsteady forces and the effect of aspect ratio on these forces. The coherence of vortex shedding along the span of the cylinder is partially destroyed by the separated flow emanating from the top and by the recirculating flow behind the cylinder. As a result, the fluctuating lift decreases drastically. Based on the data collected, it is conjectured that the fluctuating recirculating flow behind the cylinder is the flow mechanism responsible for the unsteady drag and causes it to increase beyond the fluctuating lift. The fluctuating recirculating flow is a direct consequence of the unsteady separated flow. The unsteady forces vary along the span, with lift increasing and drag decreasing towards the cylinder base. When the cylinder span is large compared to the wall boundary layer thickness, a submerged two-dimensional region exists near the base. As the span decreases, the submerged two-dimensional region becomes smaller and eventually vanishes. Altogether, these results show that fluctuating drag is the dominant unsteady force in finite-span cylinders placed in a cross-flow. Its characteristic frequency is larger than that of the vortex shedding frequency.List of symbols a span of active element on cylinder, = 2.5 cm - C D local rms drag coefficient, 2D/ U 2 da - C L local rms lift coefficient, 2l/ U 2 da - C D local mean drag coefficient, 2D/ U 2 da - C D spanwise-averaged C D for finite-span cylinder - (C D ) 2D spanwise-averaged mean drag coefficient for two-dimensional cylinder - C p pressured coefficient - -(C p ) b pressure coefficient at = - d diameter of cylinder, = 10.2 cm - D fluctuating component of instantaneous drag - D local rms of fluctuating drag - D local mean drag - E D power spectrum of fluctuating drag, defined as - E L power spectra of fluctuating lift, defined as - f D dominant frequency of drag spectrum - f L dominant frequency of lift spectrum - f u dominant frequency of velocity spectrum - h span of cylinder - H height of test section, = 30.5 cm - L fluctuating component of instantaneous lift - L local rms of fluctuating lift - R Du () cross-correlation function of streamwise velocity and local drag, - R Lu () cross-correlation function of stream wise velocity and local lift, - Re Reynolds number, U d/y - S L Strouhal number based on f L ,f L d/U - S D Strouhal number based on f D ,f D d/U - S u Strouhal number based on f u , f u d/U - t time - u fluctuating component of instantaneous streamwise velocity - U mean streamwise velocity - mean stream velocity upstream of cylinder - x streamwise distance measured from axis of cylinder - y transverse distance measured from axis of test section - z spanwise distance measured from cylinder base - angular position on cylinder circumference measured from forward stagnation - kinematic viscosity of air - density of air - time lag in cross-correlation function - D normalized spectrum of fluctuating drag - L normalized spectrum of fluctuating lift  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号