首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiAlN作为一种三元复合纳米涂层材料,具有非常好的性能.该涂层克服了TiN涂层所存在的一些缺陷,其硬度远远高于TiN涂层,最高可达47GPa, 并且具有很好的热稳定性,在700℃高温下仍很稳定,而TiN涂层在500℃时就已被氧化.TiAlN涂层还具有抗磨损,摩擦系数小,热膨胀系数及热传导系数低等特性,这些特性与涂层中Al含量的多少有关,Al含量的改变会导致涂层微观结构的改变,从而使其性能发生变化.氮分压和基底温度对TiAlN涂层的性质有着极其重要影响.本文结合国内外对TiAlN涂层的最新研究进展,对TiAlN涂层的应用,制备方法,结构,抗氧化性及硬度作了简要论述.  相似文献   

2.
采用物理气相沉积(Physical vapor deposition,PVD)工艺在氮化硅陶瓷刀具表面分别沉积TiAlN和TiAlSiN涂层.采用扫描电子显微镜(SEM)研究TiAlN和TiAlSiN涂层表面形貌和微观结构,X射线衍射仪(XRD)研究涂层晶体结构,显微硬度计表征涂层硬度.采用TiAlN和TiAlSiN涂层氮化硅刀具对灰铸铁进行连续干切削试验,分别研究TiAlN和TiAlSiN涂层对刀具寿命、磨损性能的影响,并探讨涂层刀具磨损机理.实验结果表明:TiAlSiN涂层晶粒比TiAlN涂层细小,从而具有更高的表面硬度.TiAlN涂层可将氮化硅陶瓷刀具寿命提高50;左右,TiAlSiN涂层可将刀具寿命提高1倍.切削过程中,TiAlN涂层刀具在磨损初期的主要磨损机理是磨粒磨损和少量粘结磨损,而后转为严重的粘结磨损;而TiAlSiN涂层刀具主要的磨损机制为磨粒磨损和粘结磨损.  相似文献   

3.
利用自行研制的磁过滤等离子体设备,在室温条件下的不锈钢基底上成功地制备了性能良好的纳米结构TiN薄膜.运用原子力显微镜和X射线衍射仪对其结构和形貌进行了表征.利用纳米硬度仪测量了TiN薄膜的硬度和弹性模量.结果显示:沉积的TiN薄膜表面非常平整光滑,致密而无缺陷;硬度远高于粗晶TiN的硬度;TiN晶粒尺寸在30~50nm;沉积过程中在基底上施加的负偏压会影响纳米结构TiN薄膜的结构和性能.  相似文献   

4.
将金属Al、Al3Ti和TiB2以AlTiB中间合金的形式引入Al2O3基体材料中,采用热压原位反应生成法制备了Al2O3/TiB2/AlN/TiN复合陶瓷材料.复合材料在烧结过程处于过渡液相烧结,并有新相AlN和TiN生成;对热压烧结后材料的硬度、断裂韧性和抗弯强度进行了测试和分析;分析了复合材料力学性能随AlTiB体积百分含量的变化规律;探讨了复合材料断面断裂方式的变化对其力学性能的影响;并对AlTiB中间合金的细化特性进行了分析.  相似文献   

5.
采用复合电镀的方法制备出Ni-W-纳米Al2O3复合涂层,研究了Al2O3添加量、温度和超声波分散等沉积条件对复合涂层沉积特性如沉积速率、Al2O3复合量和显微硬度的影响.结果表明,随着纳米Al2O3添加量的增加,复合涂层的沉积速率、Al2O3复合量和显微硬度不断增加,但当Al2O3添加量达到15g/L时沉积速度开始下降,Al2O3添加量达到17.5g/L时硬度开始下降;适宜的镀液温度大约为80℃,超声波分散时间大约为1h.  相似文献   

6.
采用陶瓷先驱体聚合物聚硼硅氮烷(PBSZ)为原料,并加入B4C粉填料以及Al粉活性填料,制备耐高温不锈钢材料的陶瓷涂层.研究了在氮气条件下所获得涂层的性能和微观形貌以及填料对涂层性能的影响.利用TG-DTA、XRD分析了先驱体的裂解过程及产物物相,并用SEM对涂层微观结构及成分进行了分析.结果表明,Al粉的加入,促进了聚硼硅氮烷的裂解,减少了涂层的体积收缩,从而有效地提高了涂层与基体的粘结强度.在1000℃氮气条件下,涂层材料主要为Al4C3,AlN,SiC,B4C,Al等相.在适当的工艺条件下,所获得的陶瓷涂层韧性良好,且具有较好的抗氧化性.微观研究表明,陶瓷涂层最佳厚度约为50 μm,涂层表面均匀、致密,与不锈钢基体之间结合良好.  相似文献   

7.
本文采用热压烧结方法在Cr12模具钢表面制备Ni60-TiC涂层,按照TiC的比例含量分别为0;、15;、25;以及35;,制备出4种配比的试样.采用维氏硬度计进行了显微硬度测试,采用摩擦磨损实验并结合SEM及EDS对Ni60-TiC涂层试样观测和分析,得出TiC加入量对涂层硬度以及摩擦性能的影响.结果表明:涂层中加入适量的TiC有助于提高涂层硬度以及摩擦性能,且涂层中TiC含量为25;时效果最为显著.  相似文献   

8.
本文以H3PO4和Al(OH)3为原料制备磷酸铝粘结剂,探讨了不同固化剂ZnO、CuO、Cr2O3对其固化行为的影响.采用XRD、邵氏硬度仪、TG-DSC等分析手段研究了磷酸盐粘结剂的物相组成、硬度、吸湿率及其固化机理等.结果表明:当P/Al摩尔比为3∶1.3时,磷酸铝粘结剂的理论固化温度为262℃,固化后产物为AlH2P3O10·H2O.固化剂的加入可以有效地缩短固化时间和提高涂层性能,以CuO为最佳.当CuO添加量不低于8wt;时,磷酸盐粘结剂固化时间最短,为2.5 h;吸湿率最低,为4.21wt;.当CuO添加量为6wt;时,涂层硬度最大,为99.2 HA.其对应的理论固化温度为145℃,固化产物为Al4(PO4)3(OH)3·xH2O和少量的Cu4P2O9·H2O.  相似文献   

9.
范烨力  王伟 《人工晶体学报》2017,46(9):1809-1813
为了改善镁合金的抗腐蚀性,用电泳沉积法在AZ91D镁合金表面沉积两种不同比例的Al2O3/Ni复合涂层.在干燥器皿中放置12h后,放入真空烧结炉中,在300℃下保温4h.通过X射线衍射,扫描电子显微镜和能谱仪对涂层的形貌,物相和微观结构进行分析;将试样浸泡在3.5wt;的NaCl溶液中,通过电化学极化曲线和阻抗谱对涂层的抗腐蚀性进行测试.结果显示,与纯Al2O3涂层相比,Al2O3/Ni复合涂层由于添加了Ni,涂层孔隙率降低,同时降低了涂层与基底热膨胀系数的不匹配程度,提高了结合强度.在四种不同比例的涂层中,Al2O3与Ni质量比为1:3的复合涂层,表面结构更加均匀致密化,涂层的抗腐蚀性能最好.  相似文献   

10.
金刚石涂层的纳米压痕力学性能研究   总被引:3,自引:1,他引:2  
用HFCVD法在硬质合金刀具上制备了CVD金刚石涂层,利用纳米压痕仪研究了CVD金刚石涂层的硬度和弹性模量等力学性能.结果表明,反应室气压、衬底温度、反应气体中CH4含量、沉积时间等参数改变了CVD金刚石膜中sp2成分含量、晶界数量及晶界上缺陷,从而影响CVD金刚石涂层的纳米硬度和弹性模量.较高或较低的衬底温度都会导致硬质合金刀具上CVD金刚石涂层的纳米硬度、弹性模量降低;随着反应室气压、反应气体中CH4含量的增加,硬质合金刀具上CVD金刚石涂层的纳米硬度、弹性模量降低;沉积时间低于6 h时,沉积时间对硬质合金刀具上CVD金刚石涂层的纳米硬度、弹性模量影响显著,沉积时间超过6 h后,沉积时间对硬质合金刀具上CVD金刚石涂层的纳米硬度、弹性模量逐渐趋向稳定.  相似文献   

11.
采用机械合金化和热压烧结制备了TiC/(Ti3Al+ZrO2)复合材料.研究了1550℃烧结温度下,不同Ti3Al含量(10、15、20、25;质量分数)对复合材料烧结及力学性能的影响.结果表明:随着Ti3Al含量的增加,烧结体致密化程度提高,抗弯强度和硬度相应提高,但当Ti3Al超过一定量时,强度、硬度又有所降低.  相似文献   

12.
采用温度梯度无压烧结工艺制备了透辉石/AlTiB增韧补强Al2O3基结构陶瓷材料,探讨了其致密化烧结特性,并对其力学性能进行了测试和分析.研究了透辉石/AlTiB增韧补强Al2O3基结构陶瓷材料的微观结构,并分析了其力学性能和微观结构与透辉石含量的关系.结果表明:与纯Al2O3相比,透辉石/AlTiB增韧补强Al2O3基结构陶瓷材料的力学性能得到明显提高,其中添加6;(体积百分含量,下同)透辉石和4;AlTiB的Al2O3基结构陶瓷材料获得较好的综合力学性能,其硬度、抗弯强度和断裂韧性分别达到16.02 GPa、370 MPa和5.11 MPa·m1/2.力学性能提高的主要原因为:添加相与Al2O3基体之间界面反应的发生以及透辉石和AlTiB对复合材料的协同晶粒细化效应.  相似文献   

13.
为改善机械零件的表面性能,采用超声波辅助化学沉积方法,在45钢基体表面制得Ni-P-TiN纳米镀层,利用透射电镜、X射线衍射仪、显微硬度计、扫描电镜、摩擦磨损试验机对其进行微观组织、机械性能及摩擦学性能研究.结果表明,镀态Ni-P-TiN纳米镀层主要由大量Ni和少量TiN组成,镍晶粒和TiN粒子的平均粒径分别为95nm和42 nm.当热处理温度达到300℃时,Ni-P-TiN纳米镀层中出现Ni3P相和NiO相,其显微硬度高达951.9Hv,其平均摩擦系数为0.43.  相似文献   

14.
将AlTiC中间合金引入Al2O3基陶瓷材料中,研究了复合材料在1450℃的烧结致密度和AlTiC体积百分含量之间的关系;对热压烧结后材料的硬度、断裂韧性和抗弯强度进行了测试和分析;探讨了其断面断裂方式的变化对复合材料力学性能的影响;并对AlTiC中间合金的细化特性进行了分析.  相似文献   

15.
以Al粉为烧结助剂,采用无压烧结工艺于1600℃下保温3 h烧制SiC陶瓷材料,研究了不同Al粉粒度及其添加量对SiC陶瓷材料结构和性能的影响.结果表明:Al粉可促进SiC陶瓷材料的烧结和力学性能的提高,同时起抗氧化的作用,且粒度较小的Al粉对其性能提升的幅度较大.当添加4wt;粒度为48μm的Al粉时,SiC陶瓷材料的性能较佳,体积密度和显气孔率分别为2.69 g/cm3和5.8;,显微硬度和抗折强度分别为2790 HV和189 MPa.SiC陶瓷材料烧结性能和力学性能的提高可归因于Al粉的促烧结作用,及其氧化产物Al2 O3和原位生成的少量莫来石分布在SiC颗粒间所起的强化作用.  相似文献   

16.
Al2O3/(W,Ti)C纳米复合陶瓷材料的显微结构   总被引:1,自引:0,他引:1  
使用纳米、亚微米级的α-Al2O3粉体和微米级的(W,Ti)C粉体为原料,采用热压烧结工艺制备了Al2O3/(W,Ti)C纳米复合陶瓷材料.对热压后材料的硬度、断裂韧性和抗弯强度进行了测试和分析,利用透射电镜、扫描电镜及X衍射仪对Al2O3/(W,Ti)C纳米复合陶瓷材料的微观组织和结构进行了研究.结果表明,增强相(W,Ti)C与基体Al2O3互相穿插、包裹,界面结合良好,形成了典型的骨架结构;球磨后的(W,Ti)C颗粒粒度分布广泛,热压烧结后与基体材料形成了内晶/晶间型结构;断裂模式的改变、内部残余应力场、位错机制、裂纹分叉和偏转等促进了材料强度和韧性的提高.  相似文献   

17.
原位氮化法制备TiN纳米粉体   总被引:3,自引:0,他引:3  
用溶胶凝胶法合成的纳米TiO2粉体作为原料,将该粉体在氨气中进行原位氮化制备了TiN纳米粉体.用XRD,TEM,化学分析等手段对合成的TiN纳米粉体的物相组成、形貌、成分进行了分析.实验分析表明:在1000℃和1100℃下分别氮化5h,可以制备粒径大约为40nm和80nm的TiN粉体,其TiN的含量分别为95.40;和98.37;;而在1000℃条件下氮化时间减少到2h时,TiN的含量仅为58.36;.氮化温度和氮化时间是合成纳米TiN的重要因素,提高合成温度和延长氮化时间均可形成纯度较高的TiN纳米粉体,但延长氮化时间更有利于获得粒径小的氮化钛粉体.  相似文献   

18.
ZnO改性Al2O3颗粒表面荷电性研究   总被引:2,自引:0,他引:2  
以硝酸锌、尿素为主要原料,采用均相沉淀法在Al2O3粉体颗粒表面制备了纳米ZnO改性涂层,涂层由5~10 nm的ZnO颗粒组成.宏观电泳测试和Zeta电位分析表明,经ZnO改性前后Al2O3颗粒在水溶液中的表面荷电性能发生了明显的改变,未改性Al2O3的Zeta电位等电点为pH=6.3,而ZnO涂层改性Al2O3颗粒在pH=2.2~12时均显示出荷负电性能.采用XRD、EDS能谱及拉曼光谱等分析测试并结合纳米ZnO的表面晶体结构特征,对ZnO改性Al2O3颗粒表面的负电荷来源进行了探讨.  相似文献   

19.
以硅粉、石墨粉为包埋原料及MgO、Al2O3和B2O3等为促渗剂,采用二次固渗工艺在C/C复合材料表面制备了Si-α-SiC-β-SiC复合涂层.并采用X射线衍射(XRD)和扫描电子显微镜(SEM)对复合涂层进行了表征.结果表明:一次固渗后的涂层为Si-β-SiC涂层, 两次固渗后可以获得致密的Si-α-SiC-β-SiC复合涂层,涂层厚约300μm,具有致密的表面和断面结构,没有开裂和孔隙等缺陷.氧化性能测试表明:在1500℃的静态空气气氛下氧化200h后,Si-α-SiC-β-SiC复合涂层能对C/C复合材料进行有效保护,涂层试样的失重仅为4.42×10-4g·cm-2.  相似文献   

20.
YSZ(Ni,Al)粉末颗粒通过电泳沉积技术在高温镍基合金600上沉积一层厚度均匀的YSZ(Ni,Al)复合热障涂层,并在室温下干燥24 h后,进行真空烧结致密化处理.真空致密化处理后的YSZ(Ni,Al)复合热障涂层在1100℃下氧化不同小时并测量涂层的结合强度.由于掺杂了镍铝氧化初期在涂层表面形成一层致密的氧化薄膜,有效地阻止了空气中的氧气进一步进入涂层内部从而提高了涂层的抗高温氧化性能,另外在陶瓷涂层YSZ中掺杂了金属元素,降低了陶瓷涂层与高温镍基合金的热膨胀系数的不匹配,使涂层表面更加平整致密,同时也提高了涂层与基体的结合强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号