首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of immobilization in an albumin-glutaraldehyde crosslinked matrix on the structure and activity of a photosystem I submembrane fraction has been studied. The photosynthetic activity recovered after immobilization was between 35 and 45% of the oxygen-uptake rates of the native material. Resulting oxygen uptake activities found in immobilized photosystem I preparations with methylviologen as acceptor were as high as 270 μmol O2 (mg Chl h)-1, An enhancement of photosystem I electron transfer, which is produced by incubation of thylakoid membranes at temperatures above 30 °C, was detected in native submembrane fractions, but not in the immobilized preparations. It is suggested that the increased activity at high temperature results from conformational modifications not allowed in the immobilization matrix. The insensitivity of immobilized photosystem I particles to prolonged storage at 4°C and to strong light exposure, as well as their high electron-transfer rates, demonstrates that the immobilization procedure used can be successfully applied to submembrane fractions.  相似文献   

2.
Low-temperature (77K) steady-state chlorophyll fluorescence emission spectra, room temperature fluorescence and light scattering of thylakoid membranes isolated from pea mutants were studied as a function of Mg2+ concentration. The mutants have modified pigment content and altered structural organization of the pigment-protein complexes, distinct surface electric properties and functions. The analysis of the 77K emission spectra revealed that Mg2+-depletion of the medium caused not only an increased energy flow toward photosystem I in all investigated membranes but also changes in the quenching of the fluorescence, most probably by internal conversion. The results indicated that the macroorganization of the photosynthetic apparatus of mutants at supramolecular level (distribution and segregation of two photosystems in thylakoid membranes) and at supermolecular level (stacking of photosystem II supercomplexes) required different Mg ion concentrations. The data confirmed that the segregation of photosystems and the stacking of thylakoid membranes are two distinct phenomena and elucidated some features of their mechanisms. The segregation is initiated by changes in the lateral microorganization of light harvesting complexes II, their migration (repulsion from photosystem I) and subsequent separation of the two photosystems. Most likely 3D aggregation and formation of macrodomains, containing only photosystem II antenna complexes, play a certain precursory role for the increasing degree of the membrane stacking and the energy coupling between the light harvesting complexes II and the core complexes of photosystem II in the frame of photosystem II supercomplexes.  相似文献   

3.
Intact trichomes of Spirulina platensis are exposed to ultraviolet- B (UV-B) radiation (270-320 nm; 1.9 mW m(-2)) for 9 h. This UV-B exposure results in alterations in the pigment-protein complexes and in the fluorescence emission profile of the chlorophyll-protein complexes of the thylakoids as compared with thylakoids isolated from control dark-adapted Spirulina cells. The UV-B exposure causes a significant decrease in photosystem II activity, but no loss in photosystem I activity. Although there is no change in the photosystem I activity in thylakoids from UV-B-exposed cells, the chlorophyll a emission at room temperature and at 77 K indicates alterations associated with photosystem I. Additionally, the results clearly demonstrate that the photosystem II core antennae of chlorophyll proteins CP47 and CP43 are affected by UV-B exposure, as revealed by Western blot analysis. Furthermore, a prominent 94 kDa protein band appears in the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) profile of UV-B-exposed cell thylakoids, which is absent from the control thylakoids. This 94 kDa protein appears not to be newly induced by UV-B exposure, but could possibly have originated from the UV-B-induced cross-linking of the thylakoid proteins. The exposure of isolated Spirulina thylakoids to the same intensity of UV-B radiation for 1-3 h induces losses in the CP47 and CP43 levels, but does not induce the appearance of the 94 kDa protein band in SDS-PAGE. These results clearly demonstrate that prolonged exposure of Spirulina cells to moderate levels of UV-B affects the chlorophyll a-protein complexes and alters the fluorescence emission spectral profile of the pigment-protein complexes of the thylakoid membranes. Thus, it is clear that chlorophyll a antennae of Spirulina platensis are significantly altered by UV-B radiation.  相似文献   

4.
This paper presents the results of a study performed to develop a rapid and straightforward method to resolve and simultaneously identify the light-harvesting proteins of photosystem I (LHCI) and photosystem II (LHCII) present in the grana and stroma of the thylakoid membranes of higher plants. These hydrophobic proteins are embedded in the phospholipid membrane, and their extraction usually requires detergent and time consuming manipulations that may introduce artifacts. The method presented here makes use of digitonin, a detergent which causes rapid (within less than 3 min) cleavage of the thylakoid membrane into two subfractions: appressed (grana) and non-appressed (stroma) membranes, the former enriched in photosystem II and the latter containing mainly photosystem I. From these two fractions identification of the protein components was performed by separating them by reversed-phase high-performance liquid chromatography (RP-HPLC) and determining the intact molecular mass by electrospray ionization mass spectrometry (ESI-MS). By this strategy the ion suppression during ESI-MS that normally occurs in the presence of membrane phospholipids was avoided, since RP-HPLC removed most phospholipids from the analytes. Consequently, high quality mass spectra were extracted from the reconstructed ion chromatograms. The specific cleavage of thylakoid membranes by digitonin, as well as the rapid identification and quantification of the antenna composition of the two complexes facilitate future studies of the lateral migration of the chlorophyll-protein complexes along thylakoid membranes, which is well known to be induced by high intensity light or other environmental stresses. Such investigations could not be performed by sodium dodecylsulfate-polyacrylamide gel electrophoresis because of insufficient resolution of the proteins having molecular masses between 22,000 and 25,000.  相似文献   

5.
Photosystem II is a multisubunit membrane complex which performs the water oxidation process in the higher plants. Core dimers and monomers of photosystem II have been isolated from thylakoid membranes by sucrose density gradient centrifugation. Lipids extracted from different photosystem II-enriched fractions obtained from spinach thylakoids have been analysed by thin layer chromatography. Cardiolipin is enriched throughout the purification of photosystem II complexes; in particular dimers contained two times more cardiolipin than their monomeric counterparts.  相似文献   

6.
The low-temperature (77 K) emission and excitation chlorophyll fluorescence spectra in thylakoid membranes isolated from pea mutants were investigated. The mutants have modified pigment content, structural organization, different surface electric properties and functions [Dobrikova et al., Photosynth. Res. 65 (2000) 165]. The emission spectra of thylakoid membranes were decomposed into bands belonging to the main pigment protein complexes. By an integration of the areas under them, the changes in the energy distribution between the two photosystems as well as within each one of them were estimated. It was shown that the excitation energy flow to the light harvesting, core antenna and RC complexes of photosystem II increases with the total amount of pigments in the mutants, relative to the that to photosystem I complexes. A reduction of the fluorescence ratio between aggregated trimers of LHC II and its trimeric and monomeric forms with the increase of the pigment content (chlorophyll a, chlorophyll b, and lutein) was observed. This implies that the closer packing in the complexes with a higher extent of aggregation regulates the energy distribution to the PS II core antenna and reaction centers complexes. Based on the reduced energy flow to PS II, i.e., the relative increased energy flow to PS I, we hypothesize that aggregation of LHC II switches the energy flow toward LHC I. These results suggest an additive regulatory mechanism, which redistributes the excitation energy between the two photosystems and operates at non-excess light intensities but at reduced pigment content.  相似文献   

7.
In the present study the analysis of the relation between the excited state population in the photosystem II (PSII) antenna and photoinactivation has been extended from an in vitro system, isolated thylakoids, to an in vivo system, Chlamydomonas reinhardtii cells. The results indicate that the excited state quenching by an added singlet quencher induces maximal protection against photoinhibition of about 30% of that expected on the basis of the observed light intensity-treatment time reciprocity rule. Similar results, obtained previously with thylakoids, have been interpreted in terms of damaged or incorrectly assembled complexes that play an important role in photoinhibition in the thylakoid membranes (Santabarbara, S., K. Neverov, F. M. Garlaschi, G. Zucchelli and R. C. Jennings [2001] Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids. FEBS Lett. 491, 109-113.). In an attempt to better define this aspect, the photoinhibition action spectra were determined for mutant barley thylakoids, lacking the chlorophyll (Chl) a-b complexes of the outer antenna, and for its wild type. The results indicate that in both systems the action spectra are significantly blueshifted (2-4 nm) and are broader than the PSII absorption in the membranes. These data are interpreted in terms of a heterogeneous population of outer and inner antenna pigment-protein complexes that contain significant levels of uncoupled Chl.  相似文献   

8.
The activity of light-induced oxygen consumption, absorption spectra, low temperature (77 K) chlorophyll fluorescence emission and excitation spectra were studied in suspensions of photosystem (PS) I submembrane particles illuminated by 2000 microE m(-2) s(-1) strong white light (WL) at 4 degrees C. A significant stimulation of oxygen uptake was observed during the first 1-4 h of photoinhibitory treatment, which rapidly decreased during further light exposure. Chlorophyll (Chl) content gradually declined during the exposure of isolated PSI particles to strong light. In addition to the Chl photobleaching, pronounced changes were found in Chl absorption and fluorescence spectra. The position of the major peak in the red part of the absorption spectrum shifted from 680 nm towards shorter wavelengths in the course of strong light exposure. A 6-nm blue shift of that peak was observed after 5-h illumination. Even more pronounced changes were found in the characteristics of Chl fluorescence. The magnitude of the dominating long-wavelength emission band at 736 nm located in untreated particles was five times reduced after 2-h exposure, whereas the loss in absolute Chl contents did not exceed 10% of its initial value. The major peak in low-temperature Chl fluorescence emission spectra shifted from 736 to 721 nm after 6-h WL treatment. Individual Chl-protein complexes differed in the response of their absorption spectra to strong WL. Unlike light-harvesting complexes (LHC), LHCI-680 and LHC-730, which did not exhibit changes in the major peak position, its maximum was shifted from 678 to 671 nm in CPIa complex after PSI submembrane particles were irradiated with strong light for 6 h. The results demonstrated that excitation energy transfer represents the stage of photosynthetic utilization of absorbed quanta which is most sensitive to strong light in isolated PSI particles.  相似文献   

9.
The high light‐induced bleaching of photosynthetic pigments and the degradation of proteins of light‐harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein‐deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light‐induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light‐induced alterations in organization of pigment–protein complexes as revealed by 77 K fluorescence.  相似文献   

10.
Photosystem II (PSII) complex activity is known to decrease under strong white light illumination, and this photoinhibition phenomenon is connected to the photobleaching of the PSII photosynthetic pigments. In this work the pigment photobleaching has been studied on PSII core complexes, by observing the effects of different factors such as the aggregation state (PSII monomers and dimers were used), temperature (20 degrees C and 10 degrees C temperatures were tested) and the presence of the exogenous phospholipids (cardiolipin and phosphatidylglycerol). In particular, PSII resistance against white light stress was studied by means of UV/VIS Absorption and Fluorescence Emission measurements. It was found that PSII dimers resulted more resistant against photobleaching and that lower temperature reduces the pigment photodestruction. Moreover, the presence of phosphatidylglycerol or cardiolipin enhanced the PSII resistance to the photobleaching phenomenon, mainly at lower temperatures.  相似文献   

11.
We performed transient absorption (TA) measurements on CP29 minor light-harvesting complexes that were reconstituted in vitro with either violaxanthin (Vio) or zeaxanthin (Zea) and demonstrate that the Zea-bound CP29 complexes exhibit charge-transfer (CT) quenching that has been correlated with the energy-dependent quenching (qE) in higher plants. Simulations of the difference TA kinetics reveal two-phase kinetics for intracomplex energy transfer to the CT quenching site in CP29 complexes, with a fast <500 fs component and a approximately 6 ps component. Specific chlorophyll sites within CP29 are identified as likely locations for CT quenching. We also construct a kinetic model for CT quenching during qE in an intact system that incorporates CP29 as a CT trap and show that the model is consistent with previous in vivo measurements on spinach thylakoid membranes. Finally, we compare simulations of CT quenching in thylakoids with those of the individual CP29 complexes and propose that CP29 rather than LHCII is a site of CT quenching.  相似文献   

12.
A wide range of immobilization procedures have been shown to stabilize the functions of photosynthetic materials. The purpose of this work was to determine if the above procedures can be applied to submembrane fractions. Triton X-100-derived photosystem II submembrane fractions isolated from spinach were immobilized in a glutaraldehyde cross-linked albumin matrix. The optimal conditions were obtained in presence of 1 mM NaCl and 5 mM MgCl2. The treated membranes were less affected by long-term storage at 4°C, high pH and temperature, and strong light exposure. The results are discussed in terms of a diffusion barrier resulting from the immobilization matrix.  相似文献   

13.
Acclimation of the photosynthetic apparatus of chlorophyll b-less barley mutant chlorina f2 to low light (100 micromolm(-2)s(-1); LL) and extremely high light level (1000 micromolm(-2)s(-1); HL) was examined using techniques of pigment analysis and chlorophyll a fluorescence measurements at room temperature and at 77 K. The absence of chlorophyll b in LL-grown chlorina f2 resulted in the reduction of functional antenna size of both photosystem II (by 67%) and photosystem I (by 21%). Chlorophyll fluorescence characteristics of the LL-grown mutant indicated no impairment of the utilization of absorbed light energy in photosystem II photochemistry. Thermal dissipation of excitation energy estimated as non-photochemical quenching of minimal fluorescence (SV(0)) was significantly higher as compared to the wild-type barley grown under LL. Despite impaired assembly of pigment-protein complexes, chlorina f2 was able to efficiently acclimate to HL. In comparison with chlorina f2 grown under LL, HL-grown chlorina f2 was characterized by unaffected maximal photochemical efficiency of photosystem II (F(V)/F(M), doubled content of both beta-carotene and the xanthophyll cycle pigments and considerably reduced efficiency of excitation energy transfer from carotenoids to chlorophyll a. The enormous xanthophyll cycle pool size was however associated with reduced SV(0) capacity. We suggest that the substantial part of the xanthophyll cycle pigments is not bound to the remaining pigment-protein complexes and acts as filter for excitation energy, thereby contributing to the efficient photoprotection of chlorina f2 grown under HL.  相似文献   

14.
Abstract Two functionally different species of violaxanthin have been observed in thylakoid membranes, one that can be de-epoxidised to zeaxanthin under light and one not available for light-induced zeaxanthin formation (Siefermann, D. and H. Y. Yamamoto, 1974, Biochim. Biophys. Acta 357 , 144–150). Here the distribution of available and unavailable violaxanthin is examined between membrane subfractions obtained from Triton X-100 solubilized spinach thylakoids by isoelectric focusing: (1) Only 40% of the available violaxanthin is detected in isolated Chl-proteins, while the residual 60% occur in a fraction of'free'pigments; (2) Almost 80% of the unavailable violaxanthin is recovered from the light-harvesting Chl a/b -protein complex (36%) and from photochemically active complexes containing photosystem I (20%) or photosystem II (20%). The results suggest a heterogenous organization of available and unavailable violaxanthin in thylakoid membranes.  相似文献   

15.
In vivo photoinhibition of photosystem I (PS I) was investigated at chilling temperature using the leaves of the chilling-resistant spinach plant treated with an inhibitor of superoxide dismutase, diethyldithiocarbamate (DDC). When spinach leaves were treated with DDC during chilling at 4 degrees C for 12 h with a light intensity of 120 micromol m(-2) s(-1), the activity of PS I and the content of iron-sulfur centers declined to about 50% and 25% of the non-DDC-treated controls, respectively. A native green gel analysis of thylakoid membranes isolated from the DDC-treated leaves resolved a novel chlorophyll-protein complex, which was identified as the light-harvesting complex I (LHC I)-deficient PS I complex when examined by 77 K fluorescence spectroscopy and two-dimensional sodium dodecyl sulfate gel electrophoresis. The possible dissociation of LHC I as an early structural change in the PS I complex after DDC-induced photoinhibition of PS I is discussed.  相似文献   

16.
Structure and dynamics of membrane-bound light-harvesting pigment-protein complexes (LHCs), which collect and transmit light energy for photosynthesis and thereby play an essential role in the regulation of photosynthesis and photoprotection, were identified and characterized using high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LHCs from photosystem II (LHCII) were isolated from the thylakoid membrane of Arabidopsis thaliana leaves after light stress treatment using sucrose density gradient centrifugation, and separated by gel-filtration into LHCII subcomplexes. Using reversed-phase high-performance liquid chromatography and two-dimensional (2D) gel electrophoresis, the LHCII proteins, Lhcb1-6 and fibrillins, were efficiently separated and identified by FTICR-MS. Some of the LHCII subcomplexes were shown to migrate from photosystem II to photosystem I as a result of short-term adaptation to changes in light intensity. In the mobile LHCII subcomplexes, decreased levels of fibrillins and a modified composition of LHCII protein isoforms were identified compared to the tightly bound LHCII subcomplexes. In addition, FTICR-MS analysis revealed several oxidative modifications of LHCII proteins. A number of protein spots in 2D gels were found to contain a mixture of proteins, illustrating the feasibility of high-resolution mass spectrometry to identify proteins that remain unseparated in 2D gels even upon extended pH gradients.  相似文献   

17.
The effects of irradiation on photosystem (PS)-I submembrane particles using intense white light (2000 micoE x m(-2) x S(-1)) at chilling temperature (4 degrees C) were studied. PSI-dependent oxygen uptake activity was stable during the first 3 h of photoinhibitory illumination in the presence of added superoxide dismutase (SOD). Without added SOD, the oxygen uptake almost doubled during this period, presumably due to the denaturation of native membrane-bound SOD or its release from the PSI membranes. The total chlorophyll (Chl) content and the magnitude of light-induced absorbance changes at 830 nm (deltaA830) were also barely affected during the first 3-3.5 h of photoinhibitory treatment. However, further exposure to strong light markedly accelerated Chl breakdown followed by a decline in oxygen uptake rate and deltaA830. This corresponded with the disappearance of the bands attributed to PsaA/B polypeptides on electrophoretic gels. Despite the invariant maximum magnitude of deltaA830 during the first 3-3.5 h of photoinhibitory treatment, the light-response curves of P700 oxidation gradually altered, demonstrating a several-fold increase in the ability of weak actinic light to oxidize P700. The major Chl a-protein 1 (CP1) band gradually disappeared during the first 4 h of light exposure with a corresponding increase in the Chl content of a band with lower electrophoretic mobility ascribed to the formation of oligomers containing CP1, light-harvesting complex I (LHCI)-680 and LHCI-730. This aggregation of Chl-protein complexes, likely caused by photoinhibitory-induced cross-linking favoring light harvesting, is proposed to explain the enhanced capacity of weak light to oxidize P700 in photoinhibited PSI submembrane fractions compared with untreated ones.  相似文献   

18.
Electric light scattering measurements demonstrate a strong decline in the permanent electric dipole moment and electric polarizability of both thylakoid membranes and photosystem II-enriched particles of the Chlorina f2 mutant which has severely reduced levels of light-harvesting chlorophyll a/b-binding proteins compared to the wild type barley chloroplasts. The shift in the electric polarizability relaxation to higher frequencies in thylakoids and photosystem II particles from Chlorina f2 reflects higher mobility of the interfacial charges of the mutant than that of the wild type membranes. The experimental data strongly suggest that the major light-harvesting complex of photosystem II directly contribute to the electric properties of thylakoid membranes.  相似文献   

19.

A comparative study of the photoreducing potentials of spinach thylakoid membranes and spinach photosystem II particles has been made. Hexachloroplatinate ions have been used as electron acceptors in a Hill-like assay for oxygen evolution measurements with both thylakoid membranes and photosystem II particles. However, unlike other Hill acceptors, such as ferricyanide, hexachloroplatinate can be fully reduced to metallic platinum that is catalytically active for hydrogen evolution. This is experimentally confirmed in the ability of chloroplast membranes to photoprecipitate platinum and photoproduce molecular hydrogen. Although similar experiments with photosystem II particles resulted in hexachloroplatinate-supported oxygen evolution, hydrogen evolution was not observed. Moreover, photosystem II particles coupled to ferredoxin and hydrogenase resulted in neither hydrogen nor oxygen evolution—a distinct contrast to the results obtained with chloroplast membranes.

  相似文献   

20.
Abstract— A comparative study was carried out on the in situ susceptibilities to photoinactivation of the photosystem I (PS I) and II (PS II) complexes of spinach thylakoids treated with efficient type II sensitizers. While the presence of the exogenous sensitizers caused a substantial increase in the extent of photoinactivation of whole chain electron transport, it did not affect PS I activity of thylakoids in light but exerted an enhanced photoinactivating effect only on PS II. The measurements of the action spectrum for the inhibition of PS II activity of the sensitizer-incorporated thylakoids and that for the generation of singlet oxygen (1O2) from them revealed that photosensitized inactivation of PS II is directly related to the photoproduction of 1O2 in thylakoid membranes. The results obtained in the present work clearly demonstrate an exceptional sensitivity of PS II to 1O2, providing circumstantial evidence that high light-induced damage to PS II may result from photosensitization reactions mediated by 1O2, which is not necessarily produced within the PS II complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号