首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Acetyldiphenyl sulfide and 4,4′-diacetyldiphenyl sulfide were synthesized from diphenyl sulfide and acetyl chloride in the presence of AlCl3 as catalyst in the Friedel-Crafts reaction. Subsequently, the ketooxime and glyoxime derivatives were also prepared. The metal complexes of the glyoximes, such as copper, nickel, and cobalt complexes were prepared. The BF2+ capped Ni(II) mononuclear complex of 4-thiophenoxyphenylglyoxime was prepared. The structures of these ligands were identified by FT-IR, 1H NMR, and 13C NMR spectral data and elemental analysis. The structures of the complexes were identified by FT-IR, elemental analysis, and magnetic measurements. The text was submitted by the authors in English.  相似文献   

2.
4-(Chloroacetyl)diphenyl thioether (1) was synthesized from chloroacetyl chloride and diphenyl thioether in the presence of AlCl3 as catalyst in a Friedel-Crafts reaction. Subsequently, its keto oxime (2) and glyoxime (3) derivatives were prepared. N-(4′-Benzo[15-crown-5]thiophenoxyphenylaminoglyoxime (H2L) and its sodium chloride complex (H2L · NaCl) were prepared from 4-(thiophenoxy)chlorophenylglyoxime (3), 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Ni(II), Co(II) and Cu(II) complexes of H2L and H2L · NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF2-capped Ni(II) mononuclear complex of the vic-dioxime was prepared. The macrocyclic ligands and their transition metal complexes were characterized on the basis of FT-IR, 1H NMR, 13C NMR spectroscopy and elemental analyses data.  相似文献   

3.
N′-(4′-Benzo[15-crown-5]naphthylaminoglyoxime (H2L) and its sodium chloride complex (H2L·NaCl) have been prepared from 2-naphthylchloroglyoxime, 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Nickel(II), cobalt(II) and copper(II) complexes of H2L and H2L·NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF 2 + -capped Ni(II), Co(III) and mononuclear complexes of thevic-dioxime were prepared. The macrocyclic ligands and their transition metal complexes have been characterized on the basis of IR, 1H NMR spectroscopy and elemental analyses data.  相似文献   

4.
N′-(4′-Benzo[15-crown-5]naphthylaminoglyoxime (H2L) and its sodium chloride complex (H2L·NaCl) have been prepared from 2-naphthylchloroglyoxime, 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Nickel(II), cobalt(II) and copper(II) complexes of H2L and H2L·NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF2+-capped Ni(II), Co(III) and mononuclear complexes of thevic-dioxime were prepared. The macrocyclic ligands and their transition metal complexes have been characterized on the basis of IR, 1H NMR spectroscopy and elemental analyses data.  相似文献   

5.
Three new vic-dioxime ligands, [N-(ethyl-4-amino-1-piperidine carboxylate)-phenylglyoxime (L1H2), N-(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L2H2), and N,N′-bis(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L3H2)], and their Co(II) with Cu(II) metal complexes, were synthesized for the first time. Mononuclear complexes of these ligands with a 1:2 metal-ligand ratio were prepared with Co(II) and Cu(II) salts. The BF2+-capped Co(II) and mononuclear complexes of the vic-dioxime were prepared for [Co(L1·BF2)2] and [Co(L2·BF2)2]. The ligands act in a polydentate fashion bonding through nitrogen atoms in the presence of a base, as do most vic-dioximes. The cobalt(II) and copper(II) complexes are non-electrolytes as shown by their molar conductivities (ΛM) in DMF. The structures of the ligands and complexes were determined by elemental analyses, FT-i.r., u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, and molar conductivity. The comparative electrochemical studies show that the stabilities of the reduced or oxidized species and the electrode potentials of the complexes are affected by the substituents attached on the oxime moieties of the complexes.  相似文献   

6.
1-Amino-6,7-O-cyclohexylidene-4-azaheptane (L) has been synthesized starting from 1-chloro-2,3-O-cyclohexylidenepropane prepared by the reaction of epichlorohydrin with cyclohexanone, catalyzed by BF3OEt2. Complexes of this ligand with Co(II), Ni(II) and Cu(II) acetates were prepared. The structures of the ligand and its complexes are proposed based on the elemental analyses, IR, UV-VIS, and 1H and 13C NMR spectra, magnetic susceptibilities, and conductomety data.  相似文献   

7.
The (E, E)‐dioxime containing a dithia‐dioxa‐diaza macrocyclic moiety 5,6 : 11,12 : 17,18‐tribenzo‐2,3‐bis(hydroxyimino)‐1,4‐diaza‐7,16‐dithia‐10,12‐dioxacyclooctadecane ( H2L ) has been synthesized in high yield by a 1 + 1 addition of cyanogendi‐N‐oxide with 2,3 : 8,9 : 14,15‐tribenzo‐1,16‐diamino‐4,13‐dithia‐7,10‐dioxahexadecane ( 3 ) which was obtained from condensation reaction with 2‐amino thiophenol and 1,2‐bis(2‐bromoethoxy)benzene, in dichloromethane at –10 °C. Two vic‐Dioxime ligands coordinate with Ni(II), Cu(II) and Co(III) through its hydroxyimino nitrogen donor atoms by the loss of the oxime protons. Homo and heterotrinuclear CuII3 and CoIIIPdII2 complexes of this ligand have been prepared; their two ligand molecules are connected via hydroxyimino or BF2+‐bridging groups and two of the metal ions are coordinated by a diaza‐dithia mixed donor macrocyclic moiety. The macrocyclic ligand and its transition metal complexes have been characterized on the basis of 1H‐, 13C‐NMR, IR and MS spectroscopy and elemental analysis data.  相似文献   

8.
5,6-O-Cyclohexylidene-1-amino-3-azahexane (L) is synthesized from 1-chloro-2,3-O-cyclohexylidenepropane, which is prepared by the reaction between epichlorohydrin and cyclohexanone. In this reaction, BF3 · OEt2 is used as a catalyst. Complexes of Co(II), Ni(II) and Cu(II) acetates with this ligand are prepared. The structures of the ligand and its complexes are proposed based on elemental analysis, IR and UV-VIS spectroscopy, magnetic susceptibility, conductometry, and 1H and 13C NMR spectroscopy.  相似文献   

9.
Abstract

Some transition metal complexes of triethylene-diamine (TED, I) and quinuclidine (Q, II) have been reported.1–5 Recently we treated I and II with metal bistetrafluoroborates (M=Co2+, Ni2+, and Cu2+) which have not been studied yet, and postulated that pure coordination complexes might be obtained. However, evidence for the existence of 1:1 adducts such as C6H12N2:BF3 (III) and C7H13N:BF2 (IV) in treatment of I and II with metal bistetrafluoroborates has now been found. We wish to describe our results concerning formation of these two new 1:1 adducts in this letter.  相似文献   

10.
4-Benzylaminobiphenylglyoxime ligand and its Cu(II) and Co(II) complexes were prepared. -bridge containing 4-benzylaminobiphenylglyoxime complexes were obtained by replacing of the bridging protons of the dioxime complexes with BF2 group. These compounds have been characterized by elemental analysis, spectroscopic (ICP-OES, infra-red) and magnetic susceptibility measurements. Thermal decomposition of the complexes is studied in nitrogen atmosphere. The final decomposition products are found to be the corresponding metal oxides. The optical constants such as optical conductivity, dielectric constant, refractive index were determined for the complexes. The analysis of the optical absorption data revealed that the band gap Eg was direct transitions. The optical dispersion parameters were determined according to Wemple and Didomenico method.  相似文献   

11.
1,2‐O‐Cyclohexylidene‐4‐aza‐8‐aminooctane (L) has been synthesized starting from 1‐chloro‐2,3‐O‐cyclohexylidene, which has been prepared by the reaction of epichlorohydrin with cyclohexanone. The complexes of this ligand with Co(II), Ni(II), Cu(II), and UO2(VI) salts were prepared. The structures of the ligand and its complexes are proposed based on elemental analyses, IR, UV‐vis, 1H, and 13C NMR spectra, magnetic susceptibility measurements, thermogravimetric analyses, and differential thermal analyses. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:254–260, 2000  相似文献   

12.
In the present study, a series of chiral C2‐symmetric ferrocenyl based binuclear η6‐benzene‐Ru(II) complexes bearing diphenylphosphinite and diisopropylphosphinite moieties have been synthesised. The new binuclear η6‐benzene‐Ru(II)‐phosphinite complexes were characterised based on nuclear magnetic resonance (1H, 13C, 31P–NMR), FT‐IR spectroscopy and elemental analysis. Then, these complexes have been screened as catalytic precursors in the transfer hydrogenation of acetophenone with 2‐propanol as both the hydrogen source and solvent in the presence of KOH. The corresponding optically active secondary alcohols were obtained in excellent conversion rates between 96 and 99% and moderate to good enantioselectivities (up to 78% ee). The complex 5 was the most efficient catalyst among the four new complexes investigated herein.  相似文献   

13.
(1R,2R)-1,2-bis-(5-amino-1,3,4-thiadiazole-2-yl)ethane-1,2-diol (L) has been prepared by the reaction of thiosemicarbazide with (2R,3R)-(+)-tartaric acid (I) and phosphorous oxychloride, and its complexes with Co(II), Ni(II) and Cu(II) have been obtained. The structures of the ligand and its complexes have been established by i. r., 1H- and 13C-n.m.r. spectra, u.v.–vis–nir spectroscopy, elemental analyses, T.g.-D.t.a. and magnetic susceptibility measurements.  相似文献   

14.
A new fluorene ligand, benzo[15-crown-5]-5H-pyrido[3′,2′:4,5]cylopenta[1,2-b]pyridin-5-ylidenehydrazone (bph), has been synthesized from the reaction of 4,5-diazafluoren-9-one with 4′-formylbenzo-15-crown-5. The Co(II), Cu(II), and Ru(II) complexes of the ligand were prepared and characterized. The metal-to-ligand ratio of the Co(II) and Cu(II) complexes was found to be 2:1 and that of the Ru(II) complex was found to be 1:1. The ligand and complexes have been characterized by FTIR, UV–visible, 1H NMR and fluorescence spectra, as well as elemental analyses and mass spectra.  相似文献   

15.
Summary Complexes of chromium(III), iron(III), cobalt(III), nickel(II) and copper(II) with salicylaldehyde N(1-piperidyl) thiocarbonyl hydrazone (spthH2), salicylaldehyde N-(1-morpholyl) thiocarbonyl hydrazone (smthH2), 2-hydroxy 4-methyl acetophenone N-(1-piperidyl) thiocarbonyl hydrazone (apthH2) and 2-hydroxy 4-methyl acetophenone N-(1-morpholyl) thiocarbonyl hydrazone (amthH2) have been prepared and characterized by analytical, spectral and magnetic measurements. Mixed ligand complexes of CuII-thiocarbonyl hydrazones and heterocyclic bases have been isolated. Depending on the nature of the metal salts used and the reaction conditions the thiocarbonyl hydrazones act as neutral or dibasic tridentate ligands.  相似文献   

16.
The novel (E,E)-dioxime,7,8-bis(hydroxyimino)-1,14-bis(monoaza[8]crown-6)-benzo[f]-4,11-dioxa-1,14-diazadecane[7,8-g]quinoxaline (H2L), has been synthesized by the reaction of 6,7-diamino-1,12-bis(monoaza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazadecane (4) which has been prepared by the reduction of 6,7-dinitro-1,12-bis(mono-aza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazdecane (3) and cyanogendi-N-oxide. Mononuclear NiII and CuII complexes of H2L have a metal:ligand ratio of 1:2 and the ligand coordinates through two hydroxyimino nitrogen atoms, as do most of the (E,E)-dioximes. The hydrogen-bridged NiII complex was converted into its BF 2 + capped anologue by the reaction with BF3 · Et2O. The reaction of the CuII complex with 2,2′-dipyridyl as an end-cap ligand gave the homotrinuclear complex. Structures for the ligand and its complexes are proposed in accordance with elemental analysis, magnetic susceptibility measurements, 1H, 13C-n.m.r, IR and MS spectral data.  相似文献   

17.
Aqueous solution of water soluble colloidal MnO2 was prepared by Perez-Benito method. Kinetics of l-methionine oxidation by colloidal MnO2 in perchloric acid (0.93 × 10−4 to 3.72 × 10−4 mol dm−3) has been studied spectrophotometrically. The reaction follows first-order kinetics with respect to [H+]. The first-order kinetics with respect to l-methionine at low concentration shifts to zero order at higher concentration. The effects of [Mn(II)] and [F] on the reaction rate were also determined. Manganese (II) has sigmoidal effect on the rate reaction and act as auto catalyst. The exact dependence on [Mn(II)] cannot be explained due to its oxidation by colloidal MnO2. Methionine sulfoxide was formed as the oxidation product of l-methionine. Ammonia and carbon dioxide have not been identified as the reaction products. The mechanism with the observed kinetics has been proposed and discussed.  相似文献   

18.
Synthesis and Analytical Characterization of Functionalized β‐Hydroxydithiocinnamic Acids and their Esters. Complex Chemistry towards Nickel(II), Palladium(II), and Platin(II) Starting from silyl‐protected 4‐hydroxy acetophenone ( 1 ) the 1,1‐ethenedihiolato complexes 3 – 5 were synthesised using carbon disulfide and potassium‐tert‐butylate as a base. After being deprotected, the resulting 4‐hydroxy‐substituted complexes 6 – 8 were esterified with DL‐α‐lipoic acid to obtain the compounds 9 – 11 . The resulting complexes were characterized using NMR spectroscopy, mass spectrometry and IR spectroscopy. 3‐substituted β‐hydroxydithiocinnamic acid methyl ester ( 12 ) was obtained via an analogous path of reaction using silyl‐protected 3‐hydroxy acetophenone ( 2 ), carbon disulfide and methyl iodide. After removing of the silyl group the resulting hydroxy group was esterified with DL‐α‐lipoic acid. Using the dithioacid ester 14 as a ligand the NiII ( 15 ), PdII ( 16 ) and PtII ( 17 ) [O,S] complexes were obtained.  相似文献   

19.
The novel (E,E)-dioxime 5,6:13,14-dibenzo-9,10-benzo(15-crown-5)-2,3-bis(hydroxyimino)-7,12-dioxo-1,4,8,11-tetraazacyclotetradecane (H2L) has been synthesized by the reaction of 4′,5′-diaminobenzo(15-crown-5) with N,N′-bis(2-carbomethoxyphenyl)diaminoglyoxime (1). Only mononuclear CoIII and RuII complexes with a metal/ligand ratio of 1:2 have been isolated. The cobalt(III) complex bridged with BF2+ is achieved with H-bonded cobalt(III) complex and borontrifluoride ethyl ether complex. The reaction of BF2 bridged cobalt(III) complex with bis(benzonitril)palladium(II) chloride gives a trinuclear complex. The structures of dioxime and its complexes are proposed according to elemental analyses, 1H and 13C-NMR, IR and mass spectral data.  相似文献   

20.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号