首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Polymer-involved nanoparticles or nanoparticle assemblies are now facing a crossroad, where the exposure of nanoparticle and multiple nanoparticles cannot be obtained at the same time. Therefore, a new series of nanoparticle clusters is synthesized, where multiple gold nanoparticles assemble with amphiphilic block copolymers supporting inside. The exposure of gold nanoparticles of the structure is confirmed and increases the reduction rate of 4-nitrophenol by 60%. The assemblies can also be used as surface enhanced Raman scattering(SERS) probes with an enhancement factor(EF) as high as 3×103.  相似文献   

2.
郑国祥  邵勇  徐斌 《化学学报》2006,64(8):733-737
用苯胺作还原剂还原氯金酸合成了金纳米结构. TEM实验表明, 苯胺还原氯金酸能生成苯胺齐聚物或其聚合物包裹的金球形纳米粒子. XPS分析表明, 金纳米粒子包覆的聚合物层带正电荷. 该纳米粒子能用于电极表面纳米结构组装及氧化还原性的生物大分子的电化学研究, 实现了超氧化物歧化酶(SOD)在这种带正电荷的金纳米粒子表面的直接电子转移.  相似文献   

3.
The design and synthesis of a new class of gold nanoparticle with guanosine monophosphate derivatives or G-rich oligonucleotides as their surface ligands are described. These nanoparticles spontaneously form macroscopic assemblies at low temperature and relatively high salt concentrations, which is attributed to the cooperative formation of guanosine quartets and G-quadruplexes between the individual nanoparticles. Significantly, the solution behavior of these nanoparticles is highly controllable by adjusting solution parameters (including temperature, ionic strength, and ion species) and the sequence of the G-rich oligonucleotide  相似文献   

4.
In this article, we describe the formation of carbon nanotube (CNT)-gold nanoparticle composites in aqueous solution using 1-pyrenemethylamine (Py-CH2NH2) as the interlinker. The alkylamine substituent of 1-pyrenemethylamine binds to a gold nanoparticle, while the pyrene chromophore is noncovalently attached to the sidewall of a carbon nanotube via pi-pi stacking interaction. Using this strategy, gold nanoparticles with diameters of 2-4 nm can be densely assembled on the sidewalls of multiwalled carbon nanotubes. The formation of functionalized gold nanoparticles and CNT-Au nanoparticle composites was followed by UV-vis absorption and luminescence spectroscopy. After functionalization of gold nanoparticles with 1-pyrenemethylamine, the distinct absorption vibronic structure of the pyrene chromophore was greatly perturbed and its absorbance value was decreased. There was also a corresponding red shift of the surface plasmon resonance (SPR) absorption band of the gold nanoparticles after surface modification from 508 to 556 nm due to interparticle plasmon coupling. Further reduction of the pyrene chromophore absorbance was observed upon formation of the CNT-Au nanoparticle composites. The photoluminescence of 1-pyrenemethylamine was largely quenched after attaching to gold nanoparticles; formation of the CNT-Au nanoparticle composites further lowered its emission intensity. The pyrene fluoroprobe also sensed a relatively nonpolar environment after its attachment to the nanotube surface. The present approach to forming high-density deposition of gold nanoparticles on the surface of multiwalled carbon nanotubes can be extended to other molecules with similar structures such as N-(1-naphthyl)ethylenediamine and phenethylamine, demonstrating the generality of this strategy for making CNT-Au nanostructure composites.  相似文献   

5.
This paper is focused on the synthesis and characterization of hydrophobically modified polyelectrolytes and their use as reducing as well as stabilizing agents for the formation of gold nanoparticles. Commercially available poly(acrylic acid) has been hydrophobically modified with various degrees of grafting of butylamine introduced randomly along the chain. Different analytical methods are performed, i.e., IR and 1H-NMR spectroscopy in combination with elemental analysis to determine the degree of grafting. The modified polymers can successfully be used for the controlled single-step synthesis and stabilization of gold nanoparticles. The process of nanoparticle formation is investigated by means of UV-vis spectroscopy. The size and shape of the particles obtained in the presence of unmodified or modified polyelectrolytes are characterized by dynamic light scattering, zeta potential measurements and transmission electron microscopy. The polyelectrolytes were involved in the crystallization process of the nanoparticles, and in the presence of hydrophobic microdomains at the particle surface, a better stabilization at higher temperature can be observed.  相似文献   

6.
Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.  相似文献   

7.
In this work, we report a simple approach for controllable synthesis of one-dimensional (1D) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form 1D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation. The morphologies of these 1D assemblies are dependent on the concentration of metallic cations in the solution. While lower concentrations led to the formation of particle dimers, higher concentrations generated long nanoparticle chain networks. In addition, the effect of EDTA, the solution pH, and the size of the PAA-DDT@AuNPs is also studied for further exploration of the mechanism of the formation of the 1D assemblies.  相似文献   

8.
The understanding of surface properties of core-shell type nanoparticles is important for exploiting the unique nanostructured catalytic properties. We report herein findings of a spectroscopic investigation of the thermal treatment of such nanoparticle assemblies. We have studied assemblies of gold nanocrystals of approximately 2 nm core sizes that are capped by alkanethiolate shells and are assembled by covalent or hydrogen-bonding linkages on a substrate as a model system. The structural evolution of the nanoparticle assemblies treated at different temperatures was probed by several spectroscopic techniques, including UV-visible, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The results show that the capping/linking shell molecules can be effectively removed to produce controllable surface and optical properties. The data further revealed that the thermally induced evolution of the surface plasmon resonance property of gold nanoparticles is dependent on the chemical nature of the linker molecule. The spectral evolution is discussed in terms of changes in particle size, interparticle distance, and dielectric medium properties, which has important implications for controlled preparation and thermal processing of core-shell nanostructured metal catalysts.  相似文献   

9.
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.  相似文献   

10.
基于AFM纳米氧化技术的金纳米粒子定点组装   总被引:4,自引:0,他引:4  
二维纳米粒子矩阵列在纳米电子器件^[1,2]、表面增强喇曼活性基底^[3,4]、刻蚀掩模^[5]等领域具有广泛的应用前景。在这些纳米粒子阵列为内部,纳米粒子的排布是随机、无序的。这一缺点已经妨碍了纳米粒子阵列在上述领域中的进一步应用。基于此,人们开始关注纳米粒子的可控组装。传统的光刻技术^[6]、微接触印刷技术^[7]以及生物分子模板技术^[8]都被用来实现纳米粒子在固体表面上的可控组装,本实验室在纳米粒子的合成及可控组装方面也进行了研究^[7,9,11]。本文力图精确控制单个纳米粒子在基底表面上的组装位置。利用AFM纳米氧化技术。在硅表面构建了纳米级的化学图形化表面,通过不同的化学官能团,如甲基、氨基对金纳米粒子亲和性质的差异,实现了纳米粒子在固体表面的定点组装。  相似文献   

11.
Fullerene-Pt nanoparticle assemblies were prepared by attachment and immobilisation of different Pt nanoparticles on a gold electrode using molecular layers of C60 as a linker system. These assemblies were active for the methanol oxidation following treatment with CO.  相似文献   

12.
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two‐dimensional films and three‐dimensional aggregates derived from N‐stearoyl‐L ‐alanine and N‐lauroyl‐L ‐alanine, respectively. The assemblies of N‐stearoyl‐L ‐alanine afforded stable films at the air–water interface. More compact assemblies were formed upon incorporation of AuNPs in the air–water interface of N‐stearoyl‐L ‐alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three‐dimensional assemblies of N‐lauroyl‐L ‐alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long‐range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze‐dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel–nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular‐level properties by means of manipulation of the information inscribed on the NP surface.  相似文献   

13.
Dielectrophoresis is an effective method for capturing nanoparticles and assembling them into nanostructures. The frequency of the dielectrophoretic alternating current (ac) electric field greatly influences the morphology of resultant nanoparticle assemblies. In this study, frequency regimes associated with specific gold nanoparticle assembly morphologies were identified. Gold nanoparticles suspended in water were captured by microelectrodes at different electric field frequencies onto thin silicon nitride membranes. The resultant assemblies were examined by transmission electron microscopy. For this system, the major frequency-dependent influence on morphology appears to arise not from the Clausius-Mossotti factor of the dielectrophoretic force itself, but instead from ac electroosmotic fluid flow and the influence of the electrical double layer at the electrode-solution interface. Frequency regimes of technological interest include those forming one-dimensional nanoparticle chains, microwires, combinations of microwires and nanoparticle chains suitable for nanogap electrode formation, and dense three-dimensional assemblies with very high surface area.  相似文献   

14.
It is shown that gold nanoparticles can be produced using cellulose ethers, methylhydroxyethyl cellulose, and carboxymethyl cellulose as reducing agents that also play the role of nanoparticle stabilizers. Depending on the synthesis conditions, nanoparticle sizes vary in the range of 20–100 nm. The application of carboxymethyl cellulose as a stabilizer may give rise to the formation of a bimodal ensemble of nanoparticles with sizes of 4–5 and 30–40 nm. The differences in the mechanisms for the reduction and stabilization of gold nanoparticles in the presence of these cellulose derivatives are established by IR spectroscopy. The obtained colloidal dispersions of gold nanoparticles remain stable for a long time.  相似文献   

15.
This paper is focused on the use of branched poly(ethyleneimine) (PEI) as reducing as well as stabilizing agent for the formation of gold nanoparticles in different media. The process of nanoparticle formation was investigated, in the absence of any other reducing agents, in microemulsion template phase in comparison to the nucleation process in aqueous polymer solution.

On the one hand, it was shown that the polyelectrolyte can be used for the controlled single-step synthesis and stabilization of gold nanoparticles via a nucleation reaction and particles with an average diameter of 7.1 nm can be produced.

On the other hand, it was demonstrated that the polymer can also act as reducing and stabilizing agent in much more complex systems, i.e. in water-in-oil (w/o) microemulsion droplets. The reverse microemulsion droplets of the quaternary system sodium dodecylsulfate (SDS)/toluene–pentanol (1:1)/water were successfully used for the synthesis of gold nanoparticles. The polymer, incorporated in the droplets, exhibits reducing properties, adsorbs on the surface of the nanoparticles and prevents their aggregation. Consequently, nanoparticles of 8.6 nm can be redispersed after solvent evaporation without a change of their size.

Nevertheless, the polymer acts already as a “template” during the formation of the nanoparticles in water and in microemulsion, so that an additional template effect of the microemulsion is not observed.

The particle formation for both methods is checked by means of UV–vis spectroscopy and the particle size and size distribution are investigated via dynamic light scattering and transmission electron microscopy (TEM).  相似文献   


16.
Developing orthogonal surface chemistry techniques that perform at the nanoscale is key to achieving precise control over molecular patterning on surfaces. We report the formation and selective functionalization of alumina nanoparticle arrays generated from block copolymer templates. This new material provides an alternative to gold for orthogonal surface chemistry at the nanometer scale. Atomic force microscopy and X-ray photoelectron spectroscopy confirm these particles show excellent selectivity over silica for phosphonic and carboxylic acid adsorption. As this is the first reported synthesis of alumina nanoparticles from block copolymer templates, characterizations via Fourier transform infrared spectroscopy, Auger electron spectroscopy, and transmission electron microscopy are presented. Reproducible formation of alumina nanoparticles was dependent on a counterintuitive synthetic step wherein a small amount of water is added to an anhydrous toluene solution of block copolymer and aluminum chloride. The oxidation environment of the aluminum in these particles, as measured by Auger electron spectroscopy, is similar to that of native aluminum oxide and alumina grown by atomic layer deposition. This discovery expands the library of available surface chemistries for nanoscale molecular patterning.  相似文献   

17.
The formation of high concentration gold nanoparticles at room temperature is reported in block copolymer-mediated synthesis where the nanoparticles have been synthesized from hydrogen tetrachloroaureate(III) hydrate (HAuCl(4)·3H(2)O) using block copolymer P85 (EO(26)PO(39)EO(26)) in aqueous solution. The formation of gold nanoparticles in these systems has been characterized using UV-visible spectroscopy and small-angle neutron scattering (SANS). We show that the presence of additional reductant (trisodium citrate) can enhance nanoparticle concentration by manyfold, which does not work in the absence of either of these (additional reductant and block copolymer). The stability of gold nanoparticles with increasing concentration has also been examined.  相似文献   

18.
Noble-metal nanoparticles directly conjugated to globular proteins   总被引:2,自引:0,他引:2  
We report the synthesis of gold nanoparticles directly conjugated to bovine serum albumin protein by chemical reduction in aqueous solution. Transmission electron microscopy reveals that the gold nanoparticles are well dispersed with an average diameter less than 2 nm, and elemental analysis verifies the composition of the gold-protein conjugates. Infrared spectroscopy confirms that the polypeptide backbone is not cleaved during the conjugation process and that the side chain functional groups remain intact. Raman spectroscopy demonstrates that the disulfide bonds in the conjugated protein are broken and thus are available for interaction with the nanoparticle surface. This synthesis method is a new technique for directly attaching gold nanoparticles to macromolecular proteins.  相似文献   

19.
We are interested in fabricating well-organized assemblies of nanosized materials with wet chemical approaches for the purpose of investigating various interfacial and mesoscopic phenomena. The paper describes how to use self-assembling techniques to prepare assemblies of colloidal nanoparticles and single walled carbon nanotubes on solid surfaces. Gold nanocolloids are taken as the model system, including preparation of functionalized nanoparticles, assembling on tailored substrates, surface reorganization, and 1D, 0D controlled assembling with the aid of scanning probe lithography. The typical work we have been doing using these elaborated nanoparticle assemblies includes, the quantitative investigations of die electromagnetic coupling of particle-particle and particle-substrate in surface enhanced Raman scattering (SERS), the single electron tunneling in nanoparticle assemblies measured with scanning probe microscopy (SPM) technique, the atomic force microscopy (AFM) lithography using the surface-confined gold nanoparticles as mask.  相似文献   

20.
Multiwall carbon nanotubes (MWNT) were modified orderly with carboxyl groups and amino groups. The MWNT/gold nanoparticle composites were formed when the amino‐functionalized MWNT was interacted with gold colloids. The functionalized MWNT was characterized using Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The amino‐functionalized MWNT allows further attaching gold nanoparticles through electrostatic interaction between the negatively charged gold nanoparticles and amino groups on the surface of the MWNT. The composite of gold nanoprticles and amino‐functionalized MWNT was characterized by transmission electron microscopy. This method decorating carbon nanotubes can be used to identify the location of functional groups, i.e. defect sites on carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号